Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
  • 1
    UID:
    gbv_1105034909
    Format: 62 S., XVI illustr.
    Series Statement: Monograph series / Royal Asiatic Society of Bengal 9
    Language: English
    Author information: Banks, Joseph 1743-1820
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Woodhead Publishing,
    UID:
    edocfu_9960073811802883
    Format: 1 online resource (535 p.)
    ISBN: 0-08-100549-0 , 0-08-100546-6
    Note: Description based upon print version of record. , Front Cover -- Start-Up Creation -- Related titles -- Start-Up Creation -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Civil and Structural Engineering -- Foreword -- 1 - Introduction to start-up creation for the smart eco-efficient built environment -- 1.1 A brief introduction to entrepreneurship and start-up creation -- 1.2 Smart eco-efficient built environment: an untouched start-up pond? -- 1.3 Outline of the book -- References -- One - Business plans, start-up financing, marketing, creativity and intellectual property marketing -- 2 - Business plan basics for engineers -- 2.1 Introduction -- 2.1.1 What makes business planning for engineers so unique? -- 2.1.1.1 Uncertainties and risks typical of technological business environments -- 2.1.1.2 Three primary challenges: financing, sizing markets, and intellectual property management -- The challenge of financing -- The challenge of sizing markets -- The challenge of intellectual property management -- 2.2 How to approach business planning for engineers -- 2.3 Developing and articulating the business model: the lean canvas approach -- 2.4 Scaling up the business -- 2.4.1 Market scaling -- 2.4.2 Process and team scaling -- 2.4.3 The danger of getting things wrong -- 2.5 A business plan template -- 2.5.1 A mini business plan for investors -- 2.5.2 Key points in the business plan for employees -- 2.6 Conclusion -- References -- 3 - Lean start-up: making the start-up more successful -- 3.1 Introduction -- 3.1.1 How to be a successful start-up -- 3.1.2 What is lean in a lean startup? -- 3.1.3 The link to the business model idea -- 3.2 The main elements of lean start-ups -- 3.2.1 Overview of key elements -- 3.2.2 Customer feedback -- 3.2.3 Big design or iterative design: pivot or persevere -- 3.2.4 Business planning or hypothesis testing. , 3.3 The key concepts of lean start-ups -- 3.3.1 Minimum viable products: do we have a problem worth solving? -- 3.3.2 Pivoting: have we built something people want? -- 3.3.3 Agile development together with the customers -- 3.3.4 Searching for a business plan: do we have the right business model? -- 3.3.5 How to find or create the next customers: scaling -- 3.4 Some examples of lean processes -- 3.5 Conclusion and future trends -- 3.5.1 Lean and global -- 3.5.2 Further reading and links -- Web resources -- References -- 4 - Start-up financing -- 4.1 Introduction -- 4.2 Debt financing -- 4.2.1 Introduction -- 4.2.2 Pros and cons -- 4.2.3 Issues -- 4.3 Equity financing -- 4.3.1 Introduction -- 4.3.2 Pros and cons -- 4.3.3 Key issues -- 4.4 Convertible debt financing -- 4.4.1 Introduction -- 4.4.2 Pros and cons -- 4.4.3 Key issues -- 4.5 Crowdfunding -- 4.5.1 Introduction -- 4.5.1.1 Donations -- 4.5.1.2 Rewards -- 4.5.1.3 Prepurchase -- 4.5.1.4 Lending -- 4.5.1.5 Equity crowdfunding -- 4.5.2 Pros and cons -- 4.5.3 Key issues -- 4.6 Conclusions and future trends -- References -- 5 - Marketing for start-ups -- 5.1 Introduction -- 5.2 Conceptual framework -- 5.2.1 Science- and technology-based start-ups -- 5.2.2 Navigating in an innovation context and building a network: an industrial marketing perspective -- 5.2.3 Marketing for start-ups -- 5.3 Case studies -- 5.3.1 Alpha -- 5.3.2 Beta -- 5.3.3 Relationships with innovation support actors -- 5.3.4 Relationships with business actors and customers -- 5.4 Concluding discussion -- 5.4.1 Managerial implications -- 5.4.2 Limitations -- References -- 6 - A minimalist model for measuring entrepreneurial creativity in eco-systems -- 6.1 A savvy Scotsman -- 6.2 An impossible Irishman -- 6.3 An eccentric Englishman -- 6.4 Conclusion -- References -- 7 - Intellectual property -- 7.1 Introduction. , 7.2 Forms of intellectual property rights -- 7.2.1 Trademarks -- 7.2.2 Industrial designs -- 7.2.3 Patents and utility models -- 7.2.4 Copyrights -- 7.2.5 Trade secrets -- 7.3 Historical development of the intellectual property protection -- 7.3.1 Patents -- 7.3.2 Trademarks -- 7.3.3 Copyrights -- 7.4 Regulatory aspects of intellectual property protection -- 7.4.1 International framework of the protection of intellectual property rights -- 7.4.2 Intellectual property protection in the European Union -- 7.5 Some considerations of the intellectual property protection for start-up businesses -- 7.6 Conclusions -- References -- Two - Nano and biotechnologies for eco-efficient buildings -- 8 - Nano-based thermal insulation for energy-efficient buildings -- 8.1 Introduction -- 8.2 Thermal conductivity -- 8.3 Traditional thermal building insulation -- 8.3.1 Mineral wool -- 8.3.2 Expanded polystyrene -- 8.3.3 Extruded polystyrene -- 8.3.4 Cellulose -- 8.3.5 Cork -- 8.3.6 Polyurethane -- 8.3.7 Other building materials -- 8.4 State-of-the-art thermal building insulation -- 8.4.1 Vacuum insulation panels -- 8.4.2 Gas-filled panels -- 8.4.3 Aerogels -- 8.4.4 Phase change materials -- 8.5 Nanotechnology applied on thermal insulation -- 8.6 Concepts for future thermal building insulation -- 8.6.1 Vacuum insulation materials -- 8.6.2 Gas insulation materials -- 8.6.3 Nano insulation materials -- 8.6.4 Dynamic insulation materials -- 8.6.5 Concrete and applications of nano insulation materials -- 8.6.6 NanoCon -- 8.6.7 Other future materials and solutions? -- 8.7 A comparison of weaknesses and strengths -- 8.7.1 Robustness of traditional thermal insulation materials -- 8.7.2 Thermal conductivity of state-of-the-art thermal insulation materials -- 8.7.3 Thermal conductivity of future thermal insulation materials -- 8.7.4 Thermal conductivity and other properties. , 8.7.5 Requirements of future thermal insulation materials and solutions -- 8.7.6 The potential of miscellaneous thermal insulation materials and solutions -- 8.7.7 Potential cost savings by applying vacuum insulation panels -- 8.7.8 Condensation risk by applying vacuum insulation panels in the building envelope -- 8.7.9 The cardinal weaknesses of vacuum insulation panels -- 8.7.10 Expanded polystyrene encapsulated vacuum insulation panels -- 8.7.11 Vacuum insulation materials and gas insulation materials versus nano insulation materials -- 8.7.12 The regulating potential of dynamic insulation materials -- 8.7.13 The construction potential of NanoCon -- 8.7.14 Assessing weaknesses and strengths -- 8.7.15 Does the future belong to nano insulation materials, dynamic insulation materials and NanoCon? -- 8.7.16 Future research pathways -- 8.8 Experimental pathways -- 8.8.1 Moving from concepts to experiments -- 8.8.2 Membrane foaming method -- 8.8.3 Gas release method -- 8.8.4 Template method -- 8.9 Experimental synthesis of hollow silica nanospheres -- 8.9.1 Hollow silica nanosphere experimental details -- 8.9.2 Hollow silica nanosphere results -- 8.10 Start-up creation of nano-based thermal insulation -- 8.11 Future perspectives for the research paths ahead -- 8.12 Conclusions -- Acknowledgments -- References -- 9 - Nano-based phase change materials for building energy efficiency∗ -- 9.1 Introduction -- 9.2 Classification of phase change materials -- 9.2.1 Based on material -- 9.2.2 Based on packaging -- 9.3 Synthesis of nano phase change materials -- 9.3.1 Nano-encapsulated phase change materials -- 9.3.2 Nanoparticle phase change material composites -- 9.4 Characterization of nano phase change materials -- 9.4.1 Thermophysical properties -- 9.4.2 Test methods for thermal characterization -- 9.5 Building applications. , 9.6 Phase change material manufacturers -- 9.7 Summary and conclusions -- 9.8 Future research -- Nomenclature -- Acknowledgments -- References -- 10 - Nano-based chromogenic technologies for building energy efficiency -- 10.1 Introduction -- 10.2 Chromogenic technologies -- 10.2.1 Thermochromic technology -- 10.2.2 Electrochromic technology -- 10.2.3 Gasochromic technology -- 10.2.4 Photochromic technology -- 10.2.5 Creation of start-ups -- 10.3 Performance demonstrations -- 10.3.1 Experiments -- 10.3.1.1 Single thermochromic glazing -- 10.3.1.2 Double thermochromic glazing -- 10.3.2 Simulations -- 10.4 Performance improvement -- 10.4.1 Radiation properties -- 10.4.1.1 Long-wave thermal radiation -- 10.4.1.2 Solar radiation properties -- 10.4.2 Thermal transmittance -- 10.5 Conclusions and future trends -- References -- 11 - Façade integrated photobioreactors for building energy efficiency -- 11.1 Introduction -- 11.2 What are microalgae? -- 11.3 What is a photobioreactor? -- 11.3.1 Panel-type photobioreactors -- 11.3.2 Tubular-type photobioreactors -- 11.3.3 Fermenter tank photobioreactors -- 11.3.4 Integrated photobioreactor designs -- 11.3.5 Design and scale-up parameters -- 11.3.5.1 Light supply and illumination strategy -- 11.3.5.2 Aeration and mixing -- 11.3.5.3 Construction materials and reactor geometry -- 11.3.5.4 Gas exchange and degassing -- 11.3.5.5 Control elements -- 11.4 Potential role of photobioreactor systems in building -- 11.5 The realization of a façade photobioreactor-integrated building for the future -- 11.6 Microalgae, a green volunteer for a better building: looking from an objective perspective for a start-up -- 11.7 Conclusion -- Acknowledgments -- References -- 12 - Biotechnologies for improving indoor air quality -- 12.1 Introduction -- 12.2 Issues of air pollution in indoor environments. , 12.2.1 Classification of indoor environments.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Woodhead Publishing,
    UID:
    edoccha_9960073811802883
    Format: 1 online resource (535 p.)
    ISBN: 0-08-100549-0 , 0-08-100546-6
    Note: Description based upon print version of record. , Front Cover -- Start-Up Creation -- Related titles -- Start-Up Creation -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Civil and Structural Engineering -- Foreword -- 1 - Introduction to start-up creation for the smart eco-efficient built environment -- 1.1 A brief introduction to entrepreneurship and start-up creation -- 1.2 Smart eco-efficient built environment: an untouched start-up pond? -- 1.3 Outline of the book -- References -- One - Business plans, start-up financing, marketing, creativity and intellectual property marketing -- 2 - Business plan basics for engineers -- 2.1 Introduction -- 2.1.1 What makes business planning for engineers so unique? -- 2.1.1.1 Uncertainties and risks typical of technological business environments -- 2.1.1.2 Three primary challenges: financing, sizing markets, and intellectual property management -- The challenge of financing -- The challenge of sizing markets -- The challenge of intellectual property management -- 2.2 How to approach business planning for engineers -- 2.3 Developing and articulating the business model: the lean canvas approach -- 2.4 Scaling up the business -- 2.4.1 Market scaling -- 2.4.2 Process and team scaling -- 2.4.3 The danger of getting things wrong -- 2.5 A business plan template -- 2.5.1 A mini business plan for investors -- 2.5.2 Key points in the business plan for employees -- 2.6 Conclusion -- References -- 3 - Lean start-up: making the start-up more successful -- 3.1 Introduction -- 3.1.1 How to be a successful start-up -- 3.1.2 What is lean in a lean startup? -- 3.1.3 The link to the business model idea -- 3.2 The main elements of lean start-ups -- 3.2.1 Overview of key elements -- 3.2.2 Customer feedback -- 3.2.3 Big design or iterative design: pivot or persevere -- 3.2.4 Business planning or hypothesis testing. , 3.3 The key concepts of lean start-ups -- 3.3.1 Minimum viable products: do we have a problem worth solving? -- 3.3.2 Pivoting: have we built something people want? -- 3.3.3 Agile development together with the customers -- 3.3.4 Searching for a business plan: do we have the right business model? -- 3.3.5 How to find or create the next customers: scaling -- 3.4 Some examples of lean processes -- 3.5 Conclusion and future trends -- 3.5.1 Lean and global -- 3.5.2 Further reading and links -- Web resources -- References -- 4 - Start-up financing -- 4.1 Introduction -- 4.2 Debt financing -- 4.2.1 Introduction -- 4.2.2 Pros and cons -- 4.2.3 Issues -- 4.3 Equity financing -- 4.3.1 Introduction -- 4.3.2 Pros and cons -- 4.3.3 Key issues -- 4.4 Convertible debt financing -- 4.4.1 Introduction -- 4.4.2 Pros and cons -- 4.4.3 Key issues -- 4.5 Crowdfunding -- 4.5.1 Introduction -- 4.5.1.1 Donations -- 4.5.1.2 Rewards -- 4.5.1.3 Prepurchase -- 4.5.1.4 Lending -- 4.5.1.5 Equity crowdfunding -- 4.5.2 Pros and cons -- 4.5.3 Key issues -- 4.6 Conclusions and future trends -- References -- 5 - Marketing for start-ups -- 5.1 Introduction -- 5.2 Conceptual framework -- 5.2.1 Science- and technology-based start-ups -- 5.2.2 Navigating in an innovation context and building a network: an industrial marketing perspective -- 5.2.3 Marketing for start-ups -- 5.3 Case studies -- 5.3.1 Alpha -- 5.3.2 Beta -- 5.3.3 Relationships with innovation support actors -- 5.3.4 Relationships with business actors and customers -- 5.4 Concluding discussion -- 5.4.1 Managerial implications -- 5.4.2 Limitations -- References -- 6 - A minimalist model for measuring entrepreneurial creativity in eco-systems -- 6.1 A savvy Scotsman -- 6.2 An impossible Irishman -- 6.3 An eccentric Englishman -- 6.4 Conclusion -- References -- 7 - Intellectual property -- 7.1 Introduction. , 7.2 Forms of intellectual property rights -- 7.2.1 Trademarks -- 7.2.2 Industrial designs -- 7.2.3 Patents and utility models -- 7.2.4 Copyrights -- 7.2.5 Trade secrets -- 7.3 Historical development of the intellectual property protection -- 7.3.1 Patents -- 7.3.2 Trademarks -- 7.3.3 Copyrights -- 7.4 Regulatory aspects of intellectual property protection -- 7.4.1 International framework of the protection of intellectual property rights -- 7.4.2 Intellectual property protection in the European Union -- 7.5 Some considerations of the intellectual property protection for start-up businesses -- 7.6 Conclusions -- References -- Two - Nano and biotechnologies for eco-efficient buildings -- 8 - Nano-based thermal insulation for energy-efficient buildings -- 8.1 Introduction -- 8.2 Thermal conductivity -- 8.3 Traditional thermal building insulation -- 8.3.1 Mineral wool -- 8.3.2 Expanded polystyrene -- 8.3.3 Extruded polystyrene -- 8.3.4 Cellulose -- 8.3.5 Cork -- 8.3.6 Polyurethane -- 8.3.7 Other building materials -- 8.4 State-of-the-art thermal building insulation -- 8.4.1 Vacuum insulation panels -- 8.4.2 Gas-filled panels -- 8.4.3 Aerogels -- 8.4.4 Phase change materials -- 8.5 Nanotechnology applied on thermal insulation -- 8.6 Concepts for future thermal building insulation -- 8.6.1 Vacuum insulation materials -- 8.6.2 Gas insulation materials -- 8.6.3 Nano insulation materials -- 8.6.4 Dynamic insulation materials -- 8.6.5 Concrete and applications of nano insulation materials -- 8.6.6 NanoCon -- 8.6.7 Other future materials and solutions? -- 8.7 A comparison of weaknesses and strengths -- 8.7.1 Robustness of traditional thermal insulation materials -- 8.7.2 Thermal conductivity of state-of-the-art thermal insulation materials -- 8.7.3 Thermal conductivity of future thermal insulation materials -- 8.7.4 Thermal conductivity and other properties. , 8.7.5 Requirements of future thermal insulation materials and solutions -- 8.7.6 The potential of miscellaneous thermal insulation materials and solutions -- 8.7.7 Potential cost savings by applying vacuum insulation panels -- 8.7.8 Condensation risk by applying vacuum insulation panels in the building envelope -- 8.7.9 The cardinal weaknesses of vacuum insulation panels -- 8.7.10 Expanded polystyrene encapsulated vacuum insulation panels -- 8.7.11 Vacuum insulation materials and gas insulation materials versus nano insulation materials -- 8.7.12 The regulating potential of dynamic insulation materials -- 8.7.13 The construction potential of NanoCon -- 8.7.14 Assessing weaknesses and strengths -- 8.7.15 Does the future belong to nano insulation materials, dynamic insulation materials and NanoCon? -- 8.7.16 Future research pathways -- 8.8 Experimental pathways -- 8.8.1 Moving from concepts to experiments -- 8.8.2 Membrane foaming method -- 8.8.3 Gas release method -- 8.8.4 Template method -- 8.9 Experimental synthesis of hollow silica nanospheres -- 8.9.1 Hollow silica nanosphere experimental details -- 8.9.2 Hollow silica nanosphere results -- 8.10 Start-up creation of nano-based thermal insulation -- 8.11 Future perspectives for the research paths ahead -- 8.12 Conclusions -- Acknowledgments -- References -- 9 - Nano-based phase change materials for building energy efficiency∗ -- 9.1 Introduction -- 9.2 Classification of phase change materials -- 9.2.1 Based on material -- 9.2.2 Based on packaging -- 9.3 Synthesis of nano phase change materials -- 9.3.1 Nano-encapsulated phase change materials -- 9.3.2 Nanoparticle phase change material composites -- 9.4 Characterization of nano phase change materials -- 9.4.1 Thermophysical properties -- 9.4.2 Test methods for thermal characterization -- 9.5 Building applications. , 9.6 Phase change material manufacturers -- 9.7 Summary and conclusions -- 9.8 Future research -- Nomenclature -- Acknowledgments -- References -- 10 - Nano-based chromogenic technologies for building energy efficiency -- 10.1 Introduction -- 10.2 Chromogenic technologies -- 10.2.1 Thermochromic technology -- 10.2.2 Electrochromic technology -- 10.2.3 Gasochromic technology -- 10.2.4 Photochromic technology -- 10.2.5 Creation of start-ups -- 10.3 Performance demonstrations -- 10.3.1 Experiments -- 10.3.1.1 Single thermochromic glazing -- 10.3.1.2 Double thermochromic glazing -- 10.3.2 Simulations -- 10.4 Performance improvement -- 10.4.1 Radiation properties -- 10.4.1.1 Long-wave thermal radiation -- 10.4.1.2 Solar radiation properties -- 10.4.2 Thermal transmittance -- 10.5 Conclusions and future trends -- References -- 11 - Façade integrated photobioreactors for building energy efficiency -- 11.1 Introduction -- 11.2 What are microalgae? -- 11.3 What is a photobioreactor? -- 11.3.1 Panel-type photobioreactors -- 11.3.2 Tubular-type photobioreactors -- 11.3.3 Fermenter tank photobioreactors -- 11.3.4 Integrated photobioreactor designs -- 11.3.5 Design and scale-up parameters -- 11.3.5.1 Light supply and illumination strategy -- 11.3.5.2 Aeration and mixing -- 11.3.5.3 Construction materials and reactor geometry -- 11.3.5.4 Gas exchange and degassing -- 11.3.5.5 Control elements -- 11.4 Potential role of photobioreactor systems in building -- 11.5 The realization of a façade photobioreactor-integrated building for the future -- 11.6 Microalgae, a green volunteer for a better building: looking from an objective perspective for a start-up -- 11.7 Conclusion -- Acknowledgments -- References -- 12 - Biotechnologies for improving indoor air quality -- 12.1 Introduction -- 12.2 Issues of air pollution in indoor environments. , 12.2.1 Classification of indoor environments.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Woodhead Publishing,
    UID:
    almahu_9948025602102882
    Format: 1 online resource (535 p.)
    ISBN: 0-08-100549-0 , 0-08-100546-6
    Note: Description based upon print version of record. , Front Cover -- Start-Up Creation -- Related titles -- Start-Up Creation -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Civil and Structural Engineering -- Foreword -- 1 - Introduction to start-up creation for the smart eco-efficient built environment -- 1.1 A brief introduction to entrepreneurship and start-up creation -- 1.2 Smart eco-efficient built environment: an untouched start-up pond? -- 1.3 Outline of the book -- References -- One - Business plans, start-up financing, marketing, creativity and intellectual property marketing -- 2 - Business plan basics for engineers -- 2.1 Introduction -- 2.1.1 What makes business planning for engineers so unique? -- 2.1.1.1 Uncertainties and risks typical of technological business environments -- 2.1.1.2 Three primary challenges: financing, sizing markets, and intellectual property management -- The challenge of financing -- The challenge of sizing markets -- The challenge of intellectual property management -- 2.2 How to approach business planning for engineers -- 2.3 Developing and articulating the business model: the lean canvas approach -- 2.4 Scaling up the business -- 2.4.1 Market scaling -- 2.4.2 Process and team scaling -- 2.4.3 The danger of getting things wrong -- 2.5 A business plan template -- 2.5.1 A mini business plan for investors -- 2.5.2 Key points in the business plan for employees -- 2.6 Conclusion -- References -- 3 - Lean start-up: making the start-up more successful -- 3.1 Introduction -- 3.1.1 How to be a successful start-up -- 3.1.2 What is lean in a lean startup? -- 3.1.3 The link to the business model idea -- 3.2 The main elements of lean start-ups -- 3.2.1 Overview of key elements -- 3.2.2 Customer feedback -- 3.2.3 Big design or iterative design: pivot or persevere -- 3.2.4 Business planning or hypothesis testing. , 3.3 The key concepts of lean start-ups -- 3.3.1 Minimum viable products: do we have a problem worth solving? -- 3.3.2 Pivoting: have we built something people want? -- 3.3.3 Agile development together with the customers -- 3.3.4 Searching for a business plan: do we have the right business model? -- 3.3.5 How to find or create the next customers: scaling -- 3.4 Some examples of lean processes -- 3.5 Conclusion and future trends -- 3.5.1 Lean and global -- 3.5.2 Further reading and links -- Web resources -- References -- 4 - Start-up financing -- 4.1 Introduction -- 4.2 Debt financing -- 4.2.1 Introduction -- 4.2.2 Pros and cons -- 4.2.3 Issues -- 4.3 Equity financing -- 4.3.1 Introduction -- 4.3.2 Pros and cons -- 4.3.3 Key issues -- 4.4 Convertible debt financing -- 4.4.1 Introduction -- 4.4.2 Pros and cons -- 4.4.3 Key issues -- 4.5 Crowdfunding -- 4.5.1 Introduction -- 4.5.1.1 Donations -- 4.5.1.2 Rewards -- 4.5.1.3 Prepurchase -- 4.5.1.4 Lending -- 4.5.1.5 Equity crowdfunding -- 4.5.2 Pros and cons -- 4.5.3 Key issues -- 4.6 Conclusions and future trends -- References -- 5 - Marketing for start-ups -- 5.1 Introduction -- 5.2 Conceptual framework -- 5.2.1 Science- and technology-based start-ups -- 5.2.2 Navigating in an innovation context and building a network: an industrial marketing perspective -- 5.2.3 Marketing for start-ups -- 5.3 Case studies -- 5.3.1 Alpha -- 5.3.2 Beta -- 5.3.3 Relationships with innovation support actors -- 5.3.4 Relationships with business actors and customers -- 5.4 Concluding discussion -- 5.4.1 Managerial implications -- 5.4.2 Limitations -- References -- 6 - A minimalist model for measuring entrepreneurial creativity in eco-systems -- 6.1 A savvy Scotsman -- 6.2 An impossible Irishman -- 6.3 An eccentric Englishman -- 6.4 Conclusion -- References -- 7 - Intellectual property -- 7.1 Introduction. , 7.2 Forms of intellectual property rights -- 7.2.1 Trademarks -- 7.2.2 Industrial designs -- 7.2.3 Patents and utility models -- 7.2.4 Copyrights -- 7.2.5 Trade secrets -- 7.3 Historical development of the intellectual property protection -- 7.3.1 Patents -- 7.3.2 Trademarks -- 7.3.3 Copyrights -- 7.4 Regulatory aspects of intellectual property protection -- 7.4.1 International framework of the protection of intellectual property rights -- 7.4.2 Intellectual property protection in the European Union -- 7.5 Some considerations of the intellectual property protection for start-up businesses -- 7.6 Conclusions -- References -- Two - Nano and biotechnologies for eco-efficient buildings -- 8 - Nano-based thermal insulation for energy-efficient buildings -- 8.1 Introduction -- 8.2 Thermal conductivity -- 8.3 Traditional thermal building insulation -- 8.3.1 Mineral wool -- 8.3.2 Expanded polystyrene -- 8.3.3 Extruded polystyrene -- 8.3.4 Cellulose -- 8.3.5 Cork -- 8.3.6 Polyurethane -- 8.3.7 Other building materials -- 8.4 State-of-the-art thermal building insulation -- 8.4.1 Vacuum insulation panels -- 8.4.2 Gas-filled panels -- 8.4.3 Aerogels -- 8.4.4 Phase change materials -- 8.5 Nanotechnology applied on thermal insulation -- 8.6 Concepts for future thermal building insulation -- 8.6.1 Vacuum insulation materials -- 8.6.2 Gas insulation materials -- 8.6.3 Nano insulation materials -- 8.6.4 Dynamic insulation materials -- 8.6.5 Concrete and applications of nano insulation materials -- 8.6.6 NanoCon -- 8.6.7 Other future materials and solutions? -- 8.7 A comparison of weaknesses and strengths -- 8.7.1 Robustness of traditional thermal insulation materials -- 8.7.2 Thermal conductivity of state-of-the-art thermal insulation materials -- 8.7.3 Thermal conductivity of future thermal insulation materials -- 8.7.4 Thermal conductivity and other properties. , 8.7.5 Requirements of future thermal insulation materials and solutions -- 8.7.6 The potential of miscellaneous thermal insulation materials and solutions -- 8.7.7 Potential cost savings by applying vacuum insulation panels -- 8.7.8 Condensation risk by applying vacuum insulation panels in the building envelope -- 8.7.9 The cardinal weaknesses of vacuum insulation panels -- 8.7.10 Expanded polystyrene encapsulated vacuum insulation panels -- 8.7.11 Vacuum insulation materials and gas insulation materials versus nano insulation materials -- 8.7.12 The regulating potential of dynamic insulation materials -- 8.7.13 The construction potential of NanoCon -- 8.7.14 Assessing weaknesses and strengths -- 8.7.15 Does the future belong to nano insulation materials, dynamic insulation materials and NanoCon? -- 8.7.16 Future research pathways -- 8.8 Experimental pathways -- 8.8.1 Moving from concepts to experiments -- 8.8.2 Membrane foaming method -- 8.8.3 Gas release method -- 8.8.4 Template method -- 8.9 Experimental synthesis of hollow silica nanospheres -- 8.9.1 Hollow silica nanosphere experimental details -- 8.9.2 Hollow silica nanosphere results -- 8.10 Start-up creation of nano-based thermal insulation -- 8.11 Future perspectives for the research paths ahead -- 8.12 Conclusions -- Acknowledgments -- References -- 9 - Nano-based phase change materials for building energy efficiency∗ -- 9.1 Introduction -- 9.2 Classification of phase change materials -- 9.2.1 Based on material -- 9.2.2 Based on packaging -- 9.3 Synthesis of nano phase change materials -- 9.3.1 Nano-encapsulated phase change materials -- 9.3.2 Nanoparticle phase change material composites -- 9.4 Characterization of nano phase change materials -- 9.4.1 Thermophysical properties -- 9.4.2 Test methods for thermal characterization -- 9.5 Building applications. , 9.6 Phase change material manufacturers -- 9.7 Summary and conclusions -- 9.8 Future research -- Nomenclature -- Acknowledgments -- References -- 10 - Nano-based chromogenic technologies for building energy efficiency -- 10.1 Introduction -- 10.2 Chromogenic technologies -- 10.2.1 Thermochromic technology -- 10.2.2 Electrochromic technology -- 10.2.3 Gasochromic technology -- 10.2.4 Photochromic technology -- 10.2.5 Creation of start-ups -- 10.3 Performance demonstrations -- 10.3.1 Experiments -- 10.3.1.1 Single thermochromic glazing -- 10.3.1.2 Double thermochromic glazing -- 10.3.2 Simulations -- 10.4 Performance improvement -- 10.4.1 Radiation properties -- 10.4.1.1 Long-wave thermal radiation -- 10.4.1.2 Solar radiation properties -- 10.4.2 Thermal transmittance -- 10.5 Conclusions and future trends -- References -- 11 - Façade integrated photobioreactors for building energy efficiency -- 11.1 Introduction -- 11.2 What are microalgae? -- 11.3 What is a photobioreactor? -- 11.3.1 Panel-type photobioreactors -- 11.3.2 Tubular-type photobioreactors -- 11.3.3 Fermenter tank photobioreactors -- 11.3.4 Integrated photobioreactor designs -- 11.3.5 Design and scale-up parameters -- 11.3.5.1 Light supply and illumination strategy -- 11.3.5.2 Aeration and mixing -- 11.3.5.3 Construction materials and reactor geometry -- 11.3.5.4 Gas exchange and degassing -- 11.3.5.5 Control elements -- 11.4 Potential role of photobioreactor systems in building -- 11.5 The realization of a façade photobioreactor-integrated building for the future -- 11.6 Microalgae, a green volunteer for a better building: looking from an objective perspective for a start-up -- 11.7 Conclusion -- Acknowledgments -- References -- 12 - Biotechnologies for improving indoor air quality -- 12.1 Introduction -- 12.2 Issues of air pollution in indoor environments. , 12.2.1 Classification of indoor environments.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages