Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Procedia Earth and Planetary Science, 2014, Vol.10, pp.77-81
    Description: The Earth's critical zone (CZ) is the integrated life-supportive system between the atmosphere and the deepest bio-geoweathering front of geologic materials . When human beings are added to the natural workings of the critical zone, great uncertainty is introduced in understanding the consequences . As we begin our research at our Calhoun Critical Zone Observatory (CCZO) in the Southern Piedmont region of SC, we propose an ordering system for upland interfluves that is to an extent a reciprocal of the widely used Hortonian system that hydrophysically orders stream and river systems. At the Calhoun CZO, interfluve order and corresponding erosion and intra-critical zone regimes inform us about the evolution and functioning of hydrologic, geomorphologic, biogeochemical, and biotic systems; CZ response to historic land use change; and the contemporary functioning and management of the CZ. With LiDAR and DEM mapping enabling new quantitative research of landscape and critical zone structure and function, we propose that many physiographic regions will benefit from a system that orders interfluves.
    Keywords: Soil Erosion ; Sediment Transport ; Gullying ; Biogeomorphic Stabilization ; Old-Field Succession ; Agro-Ecosystems ; Geology
    ISSN: 1878-5220
    E-ISSN: 1878-5220
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 01 January 2019, Vol.14(8), p.e0220176
    Description: Here we present novel method development and instruction in the construction and use of Field Portable Gas Analyzers study of belowground aerobic respiration dynamics of deep soil systems. Our Field-Portable Gas Analysis (FPGA) platform has been developed at the Calhoun Critical Zone Observatory (CCZO) for the measurement and monitoring of soil O2 and CO2 in a variety of ecosystems around the world. The FPGA platform presented here is cost-effective, lightweight, compact, and reliable for monitoring dynamic soil gasses in-situ in the field. The FPGA platform integrates off-the-shelf components for non-dispersive infrared (NDIR) CO2 measurement and electro-chemical O2 measurement via flow-through soil gas analyses. More than 2000 soil gas measurements have been made to date using these devices over 4 years of observations. Measurement accuracy of FPGAs is consistently high as validated via conventional bench-top gas chromatography. Further, time series representations of paired CO2 and O2 measurement under hardwood forests at the CCZO demonstrate the ability to observe and track seasonal and climatic patterns belowground with this FPGA platform. Lastly, the ability to analyze the apparent respiratory quotient, the ratio of apparent CO2 accumulation divided by apparent O2 consumption relative to the aboveground atmosphere, indicates a high degree of nuanced analyses are made possible with tools like FPGAs. In sum, the accuracy and reliability of the FPGA platform for soil gas monitoring allows for low-cost temporally extensive and spatially expansive field studies of deep soil respiration.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Biogeosciences Discussions, 02/22/2018, pp.1-34
    ISSN: Biogeosciences Discussions
    E-ISSN: 1810-6285
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Biogeosciences, August 15, 2018, Vol.15(15), p.4815
    Description: pLong-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences.
    Keywords: Environmental Research – Innovations ; Environmental Research – Forecasts and Trends
    ISSN: 1726-4170
    E-ISSN: 17264189
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Remote Sensing of Environment, 01 March 2019, Vol.222, pp.78-89
    Description: The 190 km Calhoun Critical Zone Observatory in the Piedmont region of South Carolina, USA lies in an ancient, highly weathered landscape transformed by historic agricultural erosion. Following the conversion of largely hardwood forests to cultivated fields and pastures for ~200 years, excess runoff from fields led to extreme sheet, rill, and gully erosion across the landscape. Roads, terraces, and a variety of other human disturbances have increased the landscape's surface roughness. By the 1950s, cultivation-based agriculture was largely abandoned across most of the Southern Piedmont due to soil erosion, declining agricultural productivity, and shifting agricultural markets. Secondary forests, dominated by loblolly and shortleaf pines, have since regrown on much of the landscape, including the 1500 km Sumter National Forest, which was purchased from farmers and private land owners in the 1930s. Although this landscape was intensively farmed for approximately 150 years, there are a few hardwood forest stands and even entire small watersheds that have never been plowed and degraded by farming. Such relatively old hardwood stands and watersheds comprise relic landforms whose soils, regoliths, and vegetation are of interest to hydrologists, environmental historians, biogeochemists, geomorphologists, geologists, pedologists, and others interested in understanding the legacy of land-use history in this severely altered environment. In this work we champion the need for high-resolution terrain mapping and demonstrate how Light Detection And Ranging (LiDAR) digital elevation model (DEM) data and microtopographic terrain roughness analyses (MTRA) can be used to infer land use history and management. This is accomplished by analyzing fine scale variation in terrain slope across the 1190 km CCZO using data derived from three independent and overlapping LiDAR datasets at varying spatial resolutions. Terrain slope variability MTRA is further compared to three other methods of capturing and quantifying fine-scale surface roughness. We lastly demonstrate how these analyses can be employed in concert with historic aerial photography from the 1930's, contemporary Landsat remote sensing data, and ecological field data to identify reference relic landforms: hardwood stands, hillslopes, and small watersheds that have experienced minimal anthropogenic erosion for study and conservation.
    Keywords: Microtopography ; Lidar ; Erosion ; Surface Roughness ; Critical Zone ; Old-Field Succession ; Land Cover ; Gullying ; Land Use History ; Environmental Sciences ; Geography ; Geology
    ISSN: 0034-4257
    E-ISSN: 1879-0704
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages