Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Years
Person/Organisation
  • 1
    UID:
    gbv_1841043885
    Format: Diagramme, Karten
    ISSN: 2311-7680
    Content: This paper aims to understand the hydrothermal sites near the Yonaguni Knoll IV in the Okinawa Trough, and to develop new techniques to study fluid flow patterns for hydrothermal systems and their impact on ore deposits on the seafloor. Hydraulic parameters are important for hydrothermal system studies, but in-situ measurements of fluid migration rates are difficult. Hydrothermal fluids can reach several hundred degrees Celsius, temperatures high enough to perturb hydrothermal fields and pore water migration patterns. Using in-situ temperature data as constraints, we model and synthesize 1-D and 3-D cylindrical hydrothermal models to fit the spatial variations of observed temperature fields. The 1-D modeling uses Péclet number analysis along the conduit. We also construct a 3-D cylindrical model to estimate the temperature and fluid velocity fields using a finite element software. All domains are set to be porous to allow the fluid to flow. The simulation is run until it reaches a semi steadystate solution, allowing both the temperature and velocity fields to stabilize. Results show the dimension of the thermal anomaly zone is likely controlled by advective heat transfer along the vent due to upward fluid flow. We estimate a Péclet number of -1.6, and the vertical fluid flow velocities at these sites are high, approximately 106 m s-1, that is, about 100 m yr-1. This is a spatially averaged estimate over tens to hundreds of meters and does not take into account finer-scale venting, which may be very heterogeneous. The results of this work may help estimate the quantity of metal elements transported through pore fluid migration at modern hydrothermal sites
    Note: Gesehen am 03.04.2023
    In: Terrestrial, atmospheric and oceanic sciences, Heidelberg : Springer Nature, 1990, 30(2019,5) Seite 695-704, Special Issue, 2311-7680
    In: volume:30
    In: year:2019
    In: number:5
    In: pages:695-704
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages