Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: The Journal of biological chemistry, 27 March 2015, Vol.290(13), pp.8666-76
    Description: Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.
    Keywords: Anaerobic Glycolysis ; Chlamydomonas ; Electron Transfer ; Hydrogenase ; Oxidation-Reduction (Redox) ; Photosynthesis ; Adenosine Triphosphate -- Metabolism ; Chlamydomonas Reinhardtii -- Metabolism ; Chloroplasts -- Metabolism ; Hydrogen -- Metabolism ; Nadp -- Metabolism ; Oxygen -- Metabolism
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Plant physiology, June 2015, Vol.168(2), pp.615-34
    Description: In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions.
    Keywords: Environment ; Photosynthesis ; Chlamydomonas Reinhardtii -- Metabolism ; Multiprotein Complexes -- Metabolism ; Plant Proteins -- Metabolism
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Plant physiology, February 2018, Vol.176(2), pp.1793-1807
    Description: Interactions between the dinoflagellate endosymbiont and its cnidarian hosts (e.g. corals, sea anemones) are the foundation of coral-reef ecosystems. Carbon flow between the partners is a hallmark of this mutualism, but the mechanisms governing this flow and its impact on symbiosis remain poorly understood. We showed previously that although strain SSB01 can grow photoautotrophically, it can grow mixotrophically or heterotrophically when supplied with Glc, a metabolite normally transferred from the alga to its host. Here we show that Glc supplementation of SSB01 cultures causes a loss of pigmentation and photosynthetic activity, disorganization of thylakoid membranes, accumulation of lipid bodies, and alterations of cell-surface morphology. We used global transcriptome analyses to determine if these physiological changes were correlated with changes in gene expression. Glc-supplemented cells exhibited a marked reduction in levels of plastid transcripts encoding photosynthetic proteins, although most nuclear-encoded transcripts (including those for proteins involved in lipid synthesis and formation of the extracellular matrix) exhibited little change in their abundances. However, the altered carbon metabolism in Glc-supplemented cells was correlated with modest alterations (approximately 2x) in the levels of some nuclear-encoded transcripts for sugar transporters. Finally, Glc-bleached SSB01 cells appeared unable to efficiently populate anemone larvae. Together, these results suggest links between energy metabolism and cellular physiology, morphology, and symbiotic interactions. However, the results also show that in contrast to many other organisms, can undergo dramatic physiological changes that are not reflected by major changes in the abundances of nuclear-encoded transcripts and thus presumably reflect posttranscriptional regulatory processes.
    Keywords: Transcriptome ; Dinoflagellida -- Physiology ; Glucose -- Pharmacology ; Sea Anemones -- Parasitology
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: French
    Description: The photosynthetic process relies on an electron flow involving several complexes in the thylakoid membranes of photosynthetic organisms. This flux can follow two possibly competing pathways: the linear electron transfer through which electrons are transferred from water (which is oxidized)...
    Keywords: Physics ; Physics ; Biological Physics ; Chlamydomonas Reinhardtii ; Photosynthesis ; Chlamydomonas ; Métabolisme ; Spectrophotométrie ; Photosynthèse ; Électron ; Transfert ; Physics
    Source: Hyper Article en Ligne (CCSd)
    Source: Hyper Article en Ligne Open Access (CCSd)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Communications, 2013, Vol.4
    Description: Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO 2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna. The switch from linear to cyclic electron flow has long been thought to rely on the migration of antenna proteins from Photosystem II to Photosystem I. Takahashi et al. report that this is not the case and that cyclic electron flow is tuned by the intrachloroplastic redox power.
    Keywords: Article;
    ISSN: 2041-1723
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, June 2019, Vol.249, pp.512-517
    Description: Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming. The ingestion and retention time of microfibers by sea anemones depend on the presence of chemical cues of prey in the seawater and on the symbiotic status of the anemone.
    Keywords: Microplastic ; Marine Pollution ; Multiple Stressors ; Coral Reefs ; Sea Anemones ; Bleaching ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: The Journal of biological chemistry, 25 January 2019, Vol.294(4), pp.1380-1395
    Description: Photosynthetic organisms often experience extreme light conditions that can cause hyper-reduction of the chloroplast electron transport chain, resulting in oxidative damage. Accumulating evidence suggests that mitochondrial respiration and chloroplast photosynthesis are coupled when cells are absorbing high levels of excitation energy. This coupling helps protect the cells from hyper-reduction of photosynthetic electron carriers and diminishes the production of reactive oxygen species (ROS). To examine this cooperative protection, here we characterized mutants lacking the mitochondrial alternative terminal respiratory oxidases, CrAOX1 and CrAOX2. Using fluorescent fusion proteins, we experimentally demonstrated that both enzymes localize to mitochondria. We also observed that the mutant strains were more sensitive than WT cells to high light under mixotrophic and photoautotrophic conditions, with the strain being more sensitive than Additionally, the lack of CrAOX1 increased ROS accumulation, especially in very high light, and damaged the photosynthetic machinery, ultimately resulting in cell death. These findings indicate that the AOX proteins can participate in acclimation of cells to excess absorbed light energy. They suggest that when photosynthetic electron carriers are highly reduced, a chloroplast-mitochondria coupling allows safe dissipation of photosynthetically derived electrons via the reduction of O through AOX (especially AOX1)-dependent mitochondrial respiration.
    Keywords: Aox ; Algae ; Chloroplast ; Chloroplast-Mitochondria ; Electron Transport ; Electron Transport System (Ets) ; High Light ; Mitochondrial Respiratory Chain Complex ; Molecular Imaging ; Oxidative Stress ; Photosynthesis ; Reactive Oxygen Species (Ros) ; Redox ; Respiration
    ISSN: 00219258
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: French
    Description: Le processus photosynthétique se traduit par un flux d’électron impliquant différents complexes de la membrane thylacoïdale. Ce flux peut adopter deux chemins différents : le transfert d’électron linéaire (Merchant, Prochnik et al. 2007) à travers lequel les électrons sont transférés de l’eau oxydée au niveau du Photosystème II (PSII), au NADPH réduit par le PSI ; et le transfert d’électron cyclique autour du Photosystème I (PSI) et du complexe cytochrome b6f. Ces flux d’électrons sont couplés à un pompage de proton du stroma vers le lumen générant une différence de potentiel transmembranaire, permettant la synthèse d’ATP (Allen 2002). La coexistence de ces deux flux est considéré comme nécessaire à la fixation et la métabolisation des molécules de dioxyde de carbone (Seelert, Poetsch et al. 2000 ; Munekage, Hashimoto et al. 2004) dans un rapport stricte ATP / NADPH. Cette coexistence qui semble essentiel soulève la question des mécanismes qui prévalent à l’implication des mêmes acteurs photosynthétiques, dans une même membrane, dans l’un ou l’autre mode de transfert d’électron. Chez l’algue verte Chlamydomonas reinhardtii, nous avons démontré que la commutation entre les deux transferts était dépendante de l’état redox des cellules, mais contrairement à ce qui avait été suggéré dans les études précédentes (Bulté, Rebeillé et al. 1990 ; Finazzi, Rappaport et al. 2002) indépendante du phénomène de transition d’état (Takahashi, Clowez et al. 2013), qui implique la migration latérale des complexes antennaires au sein de la membrane. L’association de ces antennes au Photosystème I conduirait à la séquestration, dans une même entité biochimique, des différents acteurs du mode cyclique. Cette formation de supercomplexe dans les conditions anoxiques, à fait l’objet d’une étude fonctionnelle in vitro, laissant quelques questions ouvertes sur leurs capacités fonctionnelles. Ce travail de thèse présente aussi la caractérisation d’une limitation transitoire des accepteurs du Photosystème I, en début d’anoxie pendant laquelle il n’est pas possible d’observer d’oxydation de P700, à 705 nm. Ce phénomène dû à la recombinaison de charge est créé par un engorgement du pool de NADPH. L’oxydation spontanée du PSI au bout d’un certain temps d’anoxie implique l’induction de l’hydrogénase, acceptant les électrons du PSI. Il reste possible d’induire cette évolution de l’oxydation de P700 lorsque les cellules sont constamment sous illumination dans les conditions anoxiques, impliquant cette fois ci, la voie de l’ATP chloroplastique. L’ATP synthétisé à la lumière permettrait la consommation de NADPH via le cycle de Benson Calvin. The photosynthetic process relies on an electron flow involving several complexes in the thylakoid membranes of photosynthetic organisms. This flux can follow two possibly competing pathways: the linear electron transfer through which electrons are transferred from water (which is oxidized) to NADP+ (which is reduced), which is coupled to the generation of a transmembrane potential difference allowing the synthesis of ATP (Allen 2002); the cyclic pathway (around PSI and Cytochrome b6f complex) which only allows the production of ATP. These two pathways are thought to be essential for the reduction of CO2 and must likely coexist to allow the photosynthetic ATP/NADPH ratio to meet the requirement of the reduction of CO2 into carbohydrates (Seelert, Poetsch et al. 2000 ; Munekage, Hashimoto et al. 2004). This mere statement raises the question of the mechanisms that prevail in the implication of the same actors, within the same membrane, in either one of the two functional modes. In the green algae Chlamydomonas reinhardtii, our results show that the regulation of cyclic electron transfer is controlled by the redox poise and not by the lateral migration of antennae (Takahashi, Clowez et al. 2013), and disprove with the conclusion drawn from previous studies (Bulté, Rebeillé et al. 1990 ; Finazzi, Rappaport et al. 2002) according to which state transition would determine this switch. The association of these antennae to Photosystem I would promote the sequestration, within a single unit, of all the actors of the cyclic mode. Functional studies, in vitro, of supercomplex formation under anoxic conditions, questions on their functional capacities. This PhD work presents also the characterization of transient ‘’acceptor side limitation’’ of PSI, upon the onset of anoxia where it is not possible to observe an oxidation of P700 in 705 nm. This phenomenon due to the charge recombination is created by an accumulation of NADPH. The spontaneous oxidation of the PSI acceptor pool, after some time under anoxia, involves the hydrogenase induction, accepting the electrons from NADPH. It’s also possible to induce this PSI oxidation as soon as cells are constantly under illumination, involving chloroplast ATP pathway. ATP synthesised in the light, allow the consumption of NADPH through Benson-Calvin cycle.
    Keywords: Photosynthèse ; Électron ; Transfert ; Spectrophotométrie ; Métabolisme ; Chlamydomonas ; Photosynthesis ; Electron ; Chlamydomonas Reinhardtii ; 572.46
    Source: Networked Digital Library of Theses and Dissertations
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages