Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: Frontiers in genetics, 2017, Vol.8, pp.137
    Description: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
    Keywords: RNA-Seq ; Bioinformatics ; Biomarkers ; Fusion Gene ; Next-Generation Sequencing
    ISSN: 1664-8021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2016
    Description: Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.
    Keywords: Medulloblastoma -- Genetic Aspects ; Cancer Genetics -- Research ; Cancer Research;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    In: Nature, 2012, Vol.482(7384), p.226
    Description: Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases (1-4). To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX([alpha]-thalassaemia/mental retardation syndrome X-linked) (5) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres (6,7), were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
    Keywords: Gene Mutation -- Research ; Dna -- Research ; Dna -- Physiological Aspects ; Glioblastomas -- Genetic Aspects ; Glioblastomas -- Research ; Tumor Proteins -- Physiological Aspects ; Tumor Proteins -- Research;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Pugh, Trevor J., Shyamal Dilhan Weeraratne, Tenley C. Archer, Daniel A. Pomeranz Krummel, Daniel Auclair, James Bochicchio, Mauricio O. Carneiro, et al. 2012. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488(7409): 106-110.
    Description: Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma.
    Keywords: Article;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, 2014, Vol.510(7506), p.537
    Description: Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.
    Keywords: Gene Expression Regulation, Neoplastic ; Gene Silencing ; DNA Methylation -- Genetics ; Medulloblastoma -- Genetics ; Sequence Analysis, DNA -- Methods;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, 2014
    Description: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
    Keywords: Medulloblastoma – Research ; Medulloblastoma – Health Aspects ; DNA Sequencing – Analysis ; Growth Factor Receptors – Analysis;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, 2012, Vol.488(7409), p.100
    Description: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
    Keywords: Cerebellar Neoplasms -- Genetics ; Genome, Human -- Genetics ; Medulloblastoma -- Genetics;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Acta Neuropathologica, 2011, Vol.121(6), pp.753-761
    Description: Diffuse astrocytomas (WHO grade II) typically present as slow-growing tumours showing significant cellular differentiation, but possessing a tendency towards malignant progression. They account for ~10% of all astrocytic tumours, with a peak incidence between 30 and 40 years of age. Median survival is reported as around 6–8 years. Mutations of TP53 and IDH1 have been described as genetic hallmarks, while copy number alterations are also relatively common. However, there is some evidence to suggest that these characteristics may vary with age. Here, we present an integrated clinicopathologic, genomic and transcriptomic analysis suggesting that paediatric and adult tumours are associated with distinct genetic signatures. For example, no childhood tumour showed mutation of IDH1/2 or TP53 , virtually no copy number changes were seen, and MGMT methylation was absent. In contrast, adult tumours showed IDH1/2 mutation in 94% and TP53 mutation in 69% of cases, with multiple copy number alterations per case and hypermethylation of MGMT in the majority of tumours. These differences were associated with a worse prognosis in the adult patients. The expression array data also revealed a significant difference in the expression of a number of genes putatively involved in neural stem cell maintenance and CNS development, including DLL3, HES5, BMP2, TIMP1 and BAMBI . Genes involved in DNA replication and the cell cycle were also enriched in the adult tumours, suggesting that their more aggressive behaviour may be due to derivation from a more rapidly dividing, less differentiated cell type.
    Keywords: Astrocytoma ; Paediatric ; Differentiation ; TP53 ; IDH ; MGMT
    ISSN: 0001-6322
    E-ISSN: 1432-0533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Scientific reports, 30 November 2018, Vol.8(1), pp.17499
    Description: One key advantage of the CRISPR/Cas9 system in comparison with other gene editing approaches lies in its potential for multiplexing. Here, we describe an elaborate procedure that allows the assembly of multiple gRNA expression cassettes into a vector of choice within a single step, termed ASAP(Adaptable System for Assembly of multiplexed Plasmids)-cloning. We demonstrate the utility of ASAP-cloning for multiple CRISPR-mediated applications, including efficient multiplex gene editing, robust transcription activation and convenient analysis of Cas9 activity in the presence of multiple gRNAs.
    Keywords: Crispr-Cas Systems ; Cloning, Molecular ; Gene Editing ; Genetic Vectors -- Genetics
    E-ISSN: 2045-2322
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages