Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Plant physiology, May 2012, Vol.159(1), pp.299-310
    Description: Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
    Keywords: Protein Sorting Signals ; Medicago Truncatula -- Chemistry ; Plant Proteins -- Chemistry ; Vacuoles -- Chemistry
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Plant physiology, October 2012, Vol.160(2), pp.906-16
    Description: The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.
    Keywords: Genes, Plant ; Anion Transport Proteins -- Metabolism ; Medicago Truncatula -- Metabolism ; Nitrates -- Metabolism
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Plant physiology, June 2007, Vol.144(2), pp.682-94
    Description: The AGC protein kinase family (cAMP-dependent protein kinases A, cGMP-dependent protein kinases G, and phospholipid-dependent protein kinases C) have important roles regulating growth and development in animals and fungi. They are activated via lipid second messengers by 3-phosphoinositide-dependent protein kinase coupling lipid signals to phosphorylation of the AGC kinases. These phosphorylate downstream signal transduction protein targets. AGC kinases are becoming better studied in plants, especially in Arabidopsis (Arabidopsis thaliana), where specific AGC kinases have been shown to have key roles in regulating growth signal pathways. We report here the isolation and characterization of the first AGC kinase gene identified in Medicago truncatula, MtIRE. It was cloned by homology with the Arabidopsis INCOMPLETE ROOT HAIR ELONGATION (IRE) gene. Semiquantitative reverse transcription-polymerase chain reaction analysis shows that, unlike its Arabidopsis counterpart, MtIRE is not expressed in uninoculated roots, but is expressed in root systems that have been inoculated with Sinorhizobium meliloti and are developing root nodules. MtIRE expression is also found in flowers. Expression analysis of a time course of nodule development and of nodulating root systems of many Medicago nodulation mutants shows MtIRE expression correlates with infected cell maturation during nodule development. During the course of these experiments, nine Medicago nodulation mutants, including sli and dnf1 to 7 mutants, were evaluated for the first time for their microscopic nodule phenotype using S. meliloti constitutively expressing lacZ. Spatial localization of a pMtIRE-gusA transgene in transformed roots of composite plants showed that MtIRE expression is confined to the proximal part of the invasion zone, zone II, found in indeterminate nodules. This suggests MtIRE is useful as an expression marker for this region of the invasion zone.
    Keywords: Medicago Truncatula -- Enzymology ; Protein-Serine-Threonine Kinases -- Metabolism ; Root Nodules, Plant -- Enzymology ; Symbiosis -- Genetics
    ISSN: 0032-0889
    E-ISSN: 15322548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant Physiology, 1 February 1996, Vol.110(2), pp.501-510
    Description: The collection of symbiotic (sym) mutants of white sweetclover (Melilotus alba Desr.) provides a developmental sequence of mutants blocked early in infection or nodule organogenesis. Mutant phenotypes include non-nodulating mutants that exhibit root-hair deformations in response to Rhizobium meliloti, mutants that form ineffective nodules lacking infection threads, and mutants that form infection threads and ineffective nodules. Mutant alleles from both the sym-1 and the sym-3 loci exhibited a non-nodulating phenotype in response to R. meliloti, although one allele in the sym-1 locus formed ineffective nodules at a low frequency. Spot-inoculation experiments on a non-nodulating allele in the sym-3 locus indicated that this mutant lacked cortical cell divisions following inoculation with R. meliloti. The auxin transport inhibitor N-(1-naphthyl)phthalamic acid elicited development of pseudonodules at a high frequency on all of the sweetclover sym mutants, including the non-nodulating mutants, in which the early nodulin ENOD2 was expressed. This suggests that N-(1-naphthyl)phthalamic acid activates cortical cell divisions by circumventing a secondary signal transduction event that is lacking in the non-nodulating sweetclover mutants. The sym-3 locus and possibly the sym-1 locus appear to be essential to early host plant responses essential to nodule organogenesis.
    Keywords: Health sciences -- Medical conditions -- Diseases ; Biological sciences -- Biology -- Genetics ; Biological sciences -- Biology -- Botany ; Health sciences -- Medical sciences -- Immunology ; Biological sciences -- Agriculture -- Agricultural sciences ; Health sciences -- Medical conditions -- Infections ; Biological sciences -- Biology -- Botany ; Biological sciences -- Biology -- Genetics ; Physical sciences -- Chemistry -- Chemical compounds ; Biological sciences -- Biology -- Developmental biology
    ISSN: 00320889
    E-ISSN: 15322548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Plant physiology, December 2017, Vol.175(4), pp.1669-1689
    Description: Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.
    Keywords: Gene Expression Regulation, Plant ; Genome, Plant ; Genome-Wide Association Study ; Plant Root Nodulation -- Physiology
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Frontiers in Plant Science, Switzerland: Frontiers Research Foundation
    Description: This article focuses on four structural features of nitrate peptide families/proton-coupled oligopeptide transporters/peptide transporters that have been shown by structural and functional studies to be essential to proton-coupled symport transport.
    Keywords: Nitrate Peptide Family (Npf) Transporters ; Nitrogen ; Proton-Dependent Oligopeptide Transporter ; Genome ; Nitrate ; Phytohormones (Auxin, Gibberellin) ; Glucosinolates (Gsl)
    ISSN: 1664462X
    E-ISSN: 1664462X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Plant Signaling & Behavior, 01 February 2013, Vol.8(2)
    Description: Medicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity...
    Keywords: Medicago Truncatula ; Nrt1(Ptr) ; Nrt2.1 ; Nitrate Transport ; Arabidopsis Thaliana ; Chlorate ; Nodulation ; Root Architecture ; Botany
    E-ISSN: 1559-2324
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Plant methods, 2014, Vol.10, pp.11
    Description: Genetic crossing is an essential tool in both forward and reverse genetic approaches to understand the biological functions of genes. For Medicago truncatula (barrel medic) various crossing techniques have been used which differ in the methods used to dissect the female parent's unopened flower bud to remove immature anthers for prevention of self-pollination. Previously described methods including front, side or back incision methods may damage the flower bud, impeding successful fertilization and/or seed development because they may allow pollen to dislodge and floral organs to desiccate after crossing, all of which diminish the success rates of crossing. We report the keel petal incision method for genetic crossing in M. truncatula ecotype R108 and demonstrate successful crosses with two other M. truncatula ecotypes, A17 and A20. In the method presented here, an incision is made along the central line of the keel petal from the bottom 1/3rd of the female parent's flower bud to its distal end. This allows easy removal of anthers from the flower bud and access for cross-pollination. After pollination, the stigma and the deposited pollen from the male donor are covered by the keel petal, wing petals and standard petal, forming a natural pouch. The pouch prevents dislodging of deposited pollen from the stigma and protects the internal floral organs from drying out, without using cling-film or water-containing chambers to maintain a humid environment. The keel petal incision method showed an approximate 80% success rate in the M. truncatula R108 ecotype and also in other ecotypes including Jemalong A17 and A20. Our keel petal incision protocol shows marked improvement over existing methods with respect to the ease of crossing and the percentage of successful crosses. Developed for the M. truncatula R108 ecotype, the protocol has been demonstrated with A17 and A20 ecotypes and is expected to work with other ecotypes. Investigators of varying experience have achieved genetic crosses in M. truncatula using this method.
    Keywords: Artificial Hybridization ; Barrel Medic ; Genetic Crossing ; Keel Petal ; Legume ; Medicago Truncatula
    ISSN: 1746-4811
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Methods in molecular biology (Clifton, N.J.), 2018, Vol.1822, pp.39-59
    Description: Medicago truncatula emerged in 1990 as a model for legumes, comprising the third largest land plant family. Most legumes form symbiotic nitrogen-fixing root nodules with compatible soil bacteria and thus are important contributors to the global nitrogen cycle and sustainable agriculture. Legumes and legume products are important sources for human and animal protein as well as for edible and industrial oils. In the years since M. truncatula was chosen as a legume model, many genetic, genomic, and molecular resources have become available, including reference quality genome sequences for two widely used genotypes. Accessibility of genomic data is important for many different types of studies with M. truncatula as well as for research involving crop and forage legumes. In this chapter, we discuss strategies to obtain archived M. truncatula genomic data originally deposited into custom databases that are no longer maintained but are now accessible in general databases. We also review key current genomic databases that are specific to M. truncatula as well as those that contain M. truncatula data in addition to data from other plants.
    Keywords: Databases ; Expression Data ; Genome Data ; Genome Sequence ; Medicago Truncatula ; Model Legume ; Symbiotic Nitrogen Fixation ; Genome, Plant ; Genomics ; Medicago Truncatula -- Genetics
    E-ISSN: 1940-6029
    Source: MEDLINE/PubMed (U.S. National Library of Medicine)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Plant physiology, November 2004, Vol.136(3), pp.3692-702
    Description: To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions.
    Keywords: Genes, Plant -- Physiology ; Medicago Truncatula -- Genetics ; Symbiosis -- Genetics
    ISSN: 0032-0889
    E-ISSN: 15322548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages