Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Article
    Article
    Language: English
    In: Expert Review of Vaccines, 01 June 2013, Vol.12(6), pp.593-596
    Description: In the Second Conference on Controversies in Vaccination in Adults, leading vaccine experts among manufacturers, physicians, microbiologists, virologists, immunologists and public health specialists came together to discuss recent approaches, developments and strategies in vaccination against worldwide pressing epidemic and endemic infectious diseases (pneumococcal, staphylococcal, influenza, papillomavirus-associated tumors, varicella-zoster, AIDS and tuberculosis), and noninfectious epidemics (atherosclerosis and smoking) outlining arguments surrounding the progress of vaccines.
    Keywords: Biology
    ISSN: 1476-0584
    E-ISSN: 1744-8395
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: LaboratoriumsMedizin, 2011, Vol.35(4), pp.205-210
    Description: Die Labordiagnose einer Infektionskrankheit beruht auf dem Nachweis des Infektionserregers oder der spezifischen Immunreaktion unter Berücksichtigung der klinischen Plausibilität. Biologische Testverfahren wie der Zellkulturversuch erbringen nur näherungsweise ein quantitatives Ergebnis und sind mit einer relativ großen Streuung behaftet. Das gilt auch für Antikörperassays, soweit sie über ein biologisches Testsignal abgelesen werden (CPE, Agglutination, Komplementverbrauch). Moderne serologische und molekularbiologische Untersuchungsmethoden der Virologie werden i. d. R. über ein physikochemisches Testssignal abgelesen und quantitativ ausgewertet. Dadurch gelingt die nationale und internationale Standardisierung, die sich in Ringversuchen gut überprüfen lässt. Aus biologischen Gründen ist meist eine log. Ergebnisberechnung angezeigt, was für „signifikante“ Unterschiede in Verlaufsuntersuchungen zu berücksichtigen ist: Da sowohl Infektion als auch Immunreaktion dynamische Prozesse darstellen, können Normalwerte in der virologischen Labordiagnostik nur restriktiv definiert werden. Ihre Ergebnisse sind mehr oder minder individuell interpretationsbedürftig.
    Description: Standardisation and Interpretation of Results Obtained in the Virologic Diagnostic Service. The laboratory diagnosis of an infectious disease is based on the detection of the infectious agent or on the analysis of the specific immunoreaction in terms of clinical plausibility. Virus isolation procedures using cell cultures are difficult to quantify and to standardize. Similar restrictions are seen in traditional fluid-phase antibody assays determining residual infectivity (neutralisation test) or using biologic test signals (e.g., complement-fixation/CFT, haem-agglutination/HI). Modern serologic and molecular biologic assays result in physicochemical test signals which are easily to quantitate and which can be better controlled by external proficiency tests. Infections and immunoreactions are dynamic processes and have to be logarithmicly quantitated in test evaluations. Because of biologic reasons, standard values of virus diagnostic investigations can only defined with some restriction. The results need more or less individual interpretation.
    Keywords: Antikörpertest ; Ergebnisquantifizierung ; Interne/Externe Kontrollen ; Ringversuch ; Virus (Genom) Nachweis ; Antibody Test ; Internal/External Controls ; Proficiency Testing ; Result Quantitation ; Virus (Genome) Detection
    ISSN: 0342-3026
    E-ISSN: 1439-0477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Clinical Infectious Diseases, 1 January 2011, Vol.52(1), pp.122-127
    Description: Background. To determine the rate of seroconversion after 2 doses of a novel split virion, inactivated, adjuvanted pandemic H1N1 influenza vaccine (A/California/7/2009) in human immunodeficiency virus type 1 (HIV-1)—infected patients (ClinicalTrials.gov NCT01017172). Methods. Diagnostic study of adult HIV-1—infected patients scheduled for H1N1 influenza A vaccination. Blood samples where taken before and 21 days after the first dose and 21 days after the second dose of the vaccine. Antibody (AB) titers were determined by hemagglutination inhibition assay. Seroconversion was defined by either an AB titer ≤1:10 before and ≥1:40 after or ≥1:10 before and a ≥4-fold increase in AB titer 21 days after vaccination. Results. One hundred thirty-five patients received 2 doses of the H1N1 vaccine and were analyzed. The rate of seroconversion was 68.2% (95% confidence interval, 59.6—75.9) after the first dose and 91.9% (95% confidence interval, 85.9—95.9) after the second dose. Patients who did not seroconvert had a lower mean nadir CD4 cell count (±standard deviation; 81 ± 99 vs 190 ± 148 cells/μL; P = .006), had a longer duration of HIV infection (±standard deviation; 13.1 ± 5.9 vs 8.8 ± 6.8 years; P = .04), and were more likely to have an AB titer ≥1:40 before vaccination (4% vs 55%; P 〈 .001) when compared with patients with seroconversion. No other differences were found between the 2 groups, including AIDS status, highly active antiretroviral therapy status, HIV RNA - polymerase chain reaction load 〈50 copies/mL, CD4 cell count, sex, body mass index, and chronic hepatitis. Conclusion. Among HIV-infected patients, the rate of seroconversion after the first dose of an adjuvanted H1N1 influenza A vaccine was 68% and increased to 92% after a second doses.
    Keywords: Health sciences -- Medical treatment -- Biological therapy ; Health sciences -- Medical sciences -- Pharmacology ; Biological sciences -- Biology -- Microbiology ; Biological sciences -- Biology -- Microbiology ; Health sciences -- Medical treatment -- Biological therapy ; Health sciences -- Medical sciences -- Immunology ; Health sciences -- Medical sciences -- Immunology ; Health sciences -- Medical conditions -- Diseases ; Health sciences -- Health and wellness -- Public health ; Health sciences -- Medical treatment -- Drug therapy
    ISSN: 10584838
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 2012, Vol.7(5), p.e36506
    Description: Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
    Keywords: Research Article ; Biology ; Medicine ; Virology ; Infectious Diseases ; Molecular Biology ; Oncology ; Dermatology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: PLoS ONE, 2011, Vol.6(5), p.e19705
    Description: Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
    Keywords: Research Article ; Medicine ; Infectious Diseases ; Pharmacology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Cellular and Molecular Life Sciences, 2011, Vol.68(6), pp.1079-1090
    Description: Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised individuals. Here, non-toxic concentrations of the anti-cancer kinase inhibitor sorafenib were shown to inhibit replication of different HCMV strains (including a ganciclovir-resistant strain) in different cell types. In contrast to established anti-HCMV drugs, sorafenib inhibited HCMV major immediate early promoter activity and HCMV immediate early antigen (IEA) expression. Sorafenib is known to inhibit Raf. Comparison of sorafenib with the MEK inhibitor U0126 suggested that sorafenib inhibits HCMV IEA expression through inhibition of Raf but independently of signaling through the Raf downstream kinase MEK 1/2. In concordance, siRNA-mediated depletion of Raf but not of MEK-reduced IEA expression. In conclusion, sorafenib diminished HCMV replication in clinically relevant concentrations and inhibited HCMV IEA expression, a pathophysiologically relevant event that is not affected by established anti-HCMV drugs. Moreover, we demonstrated for the first time that Raf activation is involved in HCMV IEA expression.
    Keywords: Human cytomegalovirus ; Sorafenib ; Kinase inhibitor ; Raf ; Immediate early antigen ; Cancer chemotherapy ; Oncomodulation ; Antiviral therapy
    ISSN: 1420-682X
    E-ISSN: 1420-9071
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Laboratoriumsmedizin, 2012, Vol.36(6), pp.397-403
    Description: Zum virologischen Nachweis einer akuten Influenza und zur Überprüfung des Immunstatus steht eine Vielzahl von Untersuchungsmethoden zur Verfügung. Bei Verdacht auf eine Influenzavirusinfektion liefert der Rachenabstrich das geeignete Untersuchungsmaterial. Das tiefe Nasopharynxaspirat ist etwas sensitiver, Sputum etwas weniger ergiebig. Die RT-PCR ermöglicht in 1–2 h nach Materialeingang ein sensitives und spezifisches Ergebnis. Typen, Subtypen und Driftvarianten lassen sich durch geeignete Primersonden, die kommerziell zur Verfügung stehen, einwandfrei identifizieren. Demgegenüber ist die Zellkultur-gestützte Virusisolierung zeitaufwendiger und stärker abhängig von einer sachgerechten Materialgewinnung und –überbringung (Kühlkette). PCR und Virusanzüchtung ermöglichen die geno- bzw. phänotypische Testung auf Therapieresistenzen. Der Antigentest ist eine einfache (bed-side) Schnellmethode. Seine Spezifität ist gut, die Sensitivität limitiert; daher kann der Antigentest nicht zur individuellen Ausschlussdiagnose eingesetzt werden. Influenzavirusspezifische Antikörper erscheinen im Blut erst in der zweiten Krankheitswoche. Die Serodiagnostik erfolgt typenspezifisch mit Komplementbindungsreaktion (KBR), IFT und ELISA über eine signifikante Titerbewegung oder den Nachweis von IgA-Antikörpern. IgG-spezifische IFT und ELISA Methoden geben Auskunft über die Influenzavirus-typspezifische Durchseuchung. Die klinisch relevantere subtypen- und variantenspezifische Influenzavirusimmunität wird mit dem HHT oder NT gemessen.
    Description: A variety of methods are available for virological diagnosis and immunity assessment of influenza. For virus detection, the clinical specimen is usually the respiratory swab. In terms of sensitivity, nasopharyngeal aspirates are superior and sputum specimens are inferior. The diagnostic method of choice is RT-PCR of viral DNA sequences coding for matrix and nucleoprotein, which define influenza virus types A, B, C, or coding for haemagglutinin and neuraminidase spikes on the viral envelope identifying influenza virus A subtypes and strains. Gene-specific primer probes are commercially available. PCR takes 1–2 h after the arrival of the clinical specimen. Cell culture based virus isolation combined with intracellular antigen detection needs 1–2 days, but is regarded as gold standard. Transport of the swabs in an ice chest is recommendable. Direct antigen detection in the clinical specimen by the use of enzyme-linked immunosorbent assay (ELISA) or immunofluorescence test (IFT) is the most rapid (bedside) method, but of inferior sensitivity. Therapy resistance analysis is done by genotyping subsequent to PCR amplification or by the cell culture method (phenotyping). Antibodies due to influenza virus are produced during the second week after infection and may confirm or disprove virological diagnosis. ELISA and IFT apply nucleoprotein or matrix proteins as antigens and differentiate between the Ig classes IgA (IgM) and IgG indicating an acute or passed infection. Complement fixing antibodies do not persist. Influenza virus immunity is assessed by neutralisation assay or – more simply – by haemagglutination inhibition in a type-, subtype- and even variant-specific manner.
    Keywords: Antikörpertest ; Immunitätsbeurteilung ; Influenza ; Resistenzprüfung ; Virusnachweis ; Antibody Test ; Immune Assessment ; Influenza ; Resistance Analysis ; Virus Detection
    ISSN: 0342-3026
    E-ISSN: 1439-0477
    Source: Walter de Gruyter GmbH
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Laboratoriumsmedizin, 2013, Vol.36(6), pp.---
    Description: A variety of methods are available for virological diagnosis and immunity assessment of influenza. For virus detection, the clinical specimen is usually the respiratory swab. In terms of sensitivity, nasopharyngeal aspirates are superior and sputum specimens are inferior. The diagnostic method of choice is RT-PCR of viral DNA sequences coding for matrix and nucleoprotein, which define influenza virus types A, B, C, or coding for hemagglutinin and neuraminidase spikes on the viral envelope identifying influenza virus A subtypes and strains. Genespecific primer probes are commercially available. PCR takes 1–2 h after the arrival of the clinical specimen. Cell culture based virus isolation combined with intracellular antigen detection needs 1–2 days, but is regarded as gold standard. Transport of the swabs in an ice chest is recommendable. Direct antigen detection in the clinical specimen by the use of enzyme-linked immunosorbent assay (ELISA) or immunofluorescence test (IFT) is the most rapid (bedside) method, but of inferior sensitivity. Therapy resistance analysis is done by genotyping subsequent to PCR amplification or by the cell culture method (phenotyping). Antibodies due to influenza virus are produced during the second week after infection and may confirm or disprove virological diagnosis. ELISA and IFT apply nucleoprotein or matrix proteins as antigens and differentiate between the Ig classes IgA (IgM) and IgG indicating an acute or passed infection. Complement fixing antibodies do not persist. Influenza virus immunity is assessed by neutralization assay or – more simply – by hemagglutination inhibition in a type-, subtype- and even variantspecific manner.
    Keywords: Antibody Test ; Immune Assessment ; Influenza ; Resistance Analysis ; Virus Detection
    ISSN: 0342-3026
    E-ISSN: 1439-0477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: LaboratoriumsMedizin, 2011, Vol.35(4), pp.---
    Description: Standardisation and Interpretation of Results Obtained in the Virologic Diagnostic Service. The laboratory diagnosis of an infectious disease is based on the detection of the infectious agent or on the analysis of the specific immunoreaction in terms of clinical plausibility. Virus isolation procedures using cell cultures are difficult to quantify and to standardise. Similar restrictions are seen in traditional fluid-phase antibody assays determining residual infectivity (neutralisation test) or using biological test signals (e.g., complement-fixation/CFT, haem-agglutination/HI). Modern serologic and molecular biological assays result in physicochemical test signals which are easily to quantitate and which can be better controlled by external proficiency tests. Infections and immunoreactions are dynamic processes and have to be logarithmically quantitated in test evaluations. Because of biologic reasons, standard values of virus diagnostic investigations can only be defined with some restriction. The results need more or less individual interpretation.
    Keywords: Antibody Test ; Internal/External Controls ; Proficiency Testing ; Result Quantitation ; Virus (Genome) Detection
    ISSN: 0342-3026
    E-ISSN: 1439-0477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: LaboratoriumsMedizin / Journal of Laboratory Medicine, Nov 1, 2012, Vol.36(6), p.397(7)
    Description: A variety of methods are available for virological diagnosis and immunity assessment of influenza. For virus detection, the clinical specimen is usually the respiratory swab. In terms of sensitivity, nasopharyngeal aspirates are superior and sputum specimens are inferior. The diagnostic method of choice is RT-PCR of viral DNA sequences coding for matrix and nucleoprotein, which define influenza virus types A, B, C, or coding for haemagglutinin and neuraminidase spikes on the viral envelope identifying influenza virus A subtypes and strains. Gene-specific primer probes are commercially available. PCR takes 1-2 h after the arrival of the clinical specimen. Cell culture based virus isolation combined with intracellular antigen detection needs 1-2 days, but is regarded as gold standard. Transport of the swabs in an ice chest is recommendable. Direct antigen detection in the clinical specimen by the use of enzyme-linked immunosorbent assay (ELISA) or immunofluorescence test (IFT) is the most rapid (bedside) method, but of inferior sensitivity. Therapy resistance analysis is done by genotyping subsequent to PCR amplification or by the cell culture method (phenotyping). Antibodies due to influenza virus are produced during the second week after infection and may confirm or disprove virological diagnosis. ELISA and IFT apply nucleoprotein or matrix proteins as antigens and differentiate between the Ig classes IgA (IgM) and IgG indicating an acute or passed infection. Complement fixing antibodies do not persist. Influenza virus immunity is assessed by neutralisation assay or--more simply--by haemagglutination inhibition in a type-, subtype- and even variant-specific manner. Keywords: antibody test; immune assessment; influenza; resistance analysis; virus detection. Zum virologischen Nachweis einer akuten Influenza und zur Uberprufung des Immunstatus steht eine Vielzahl von Untersuchungsmethoden zur Verfugung. Bei Verdacht auf eine Influenzavirusinfektion liefert der Rachenabstrich das geeignete Untersuchungsmaterial. Das tiefe Nasopharynxaspirat ist etwas sensitiver, Sputum etwas weniger ergiebig. Die RT-PCR ermoglicht in 1-2 h nach Materialeingang ein sensitives und spezifisches Ergebnis. Typen, Subtypen und Driftvarianten lassen sich durch geeignete Primersonden, die kommerziell zur Verfugung stehen, einwandfrei identifizieren. Demgegenuber ist die Zellkultur-gestutzte Virusisolierung zeitaufwendiger und starker abhangig von einer sachgerechten Materialgewinnung und--uberbringung (Kuhlkette). PCR und Virusanzuchtung ermoglichen die geno--bzw. phanotypische Testung auf Therapieresistenzen. Der Antigentest ist eine einfache (bed-side) Schnellmethode. Seine Spezifitat ist gut, die Sensitivitat limitiert; daher kann der Antigentest nicht zur individuellen Ausschlussdiagnose eingesetzt werden. Influenzavirusspezifische Antikorper erscheinen im Blut erst in der zweiten Krankheitswoche. Die Serodiagnostik erfolgt typenspezifisch mit Komplementbindungsreaktion (KBR), IFT und ELISA uber eine signifikante Titerbewegung oder den Nachweis von IgA-Antikorpern. IgG-spezifische IFT und ELISA Methoden geben Auskunft uber die Influenzavirustypspezifische Durchseuchung. Die klinisch relevantere subtypen- und variantenspezifische Influenzavirusimmunitat wird mit dem HHT oder NT gemessen. Schlusselworter: Antikorpertest; Immunitatsbeurteilung; Influenza; Resistenzprufung; Virusnachweis.
    ISSN: 0342-3026
    E-ISSN: 14390477
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages