Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: The Science of the Total Environment, June 1, 2013, Vol.454-455, p.401(10)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2013.03.025 Byline: Dominic Englert, Jochen P. Zubrod, Ralf Schulz, Mirco Bundschuh Abstract: During recent years, increasing incidences of summer droughts - likely driven by climate change - reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~90% wastewater) as compared to a season with high dilution potential (winter; ~35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~65%), gammarids' feeding rate (~80%), leaf associated fungal biomass (〉40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300m (partially 500m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a Gammarus fossarum laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive -- also considering decreasing dilution potential of streams as projected by climate change scenarios. Article History: Received 13 January 2013; Revised 4 March 2013; Accepted 6 March 2013
    Keywords: Sewage Treatment -- Analysis ; Sewage Treatment -- Environmental Aspects ; Ecosystem Components -- Analysis ; Ecosystem Components -- Environmental Aspects ; Global Temperature Changes -- Analysis ; Global Temperature Changes -- Environmental Aspects ; Freshwater Ecosystems -- Analysis ; Freshwater Ecosystems -- Environmental Aspects ; Wastewater -- Analysis ; Wastewater -- Environmental Aspects
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The Science of the Total Environment, Dec 15, 2015, Vol.538, p.341(9)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2015.08.058 Byline: Dominic Englert, Jochen P. Zubrod, Ralf Schulz, Mirco Bundschuh Abstract: Human activity can degrade the habitat quality for aquatic communities, which ultimately impacts the functions these communities provide. Disentangling the complex interaction between environmental and anthropogenic parameters as well as their alteration both along the stream channel, over the seasons, and finally their impact in the aquatic ecosystem represents a fundamental challenge for environmental scientists. Therefore, the present study investigates the implications of successive land uses (i.e., vineyard, urban area, highway and wastewater treatment plant (WWTP)) on structural and functional endpoints related to the ecosystem process of leaf litter breakdown during a winter and summer season in a five km stretch of a second-order stream in southern Germany. This sequence of the different land uses caused, among others, a downstream decline of the ecological status from "high" to "bad" judged based on the SPEAR.sub.pesticides index together with significant shifts in the macroinvertebrate community composition, which coincided with substantial impairments (up to 100%) in the macroinvertebrate-mediated leaf decomposition. These effects, seem to be mainly driven by alterations in water quality rather than morphological modifications of the stream's habitat since the key shredder Gammarus was not in direct contact with the local habitat during in situ bioassays but showed similar response patterns than the other endpoints. While the relative effect size for most endpoints deviated considerably (sometimes above 2-fold) among seasons, the general response pattern pointed to reductions in energy supply for local and downstream communities. Although the present study focused on a single low-order stream with the main purpose of describing the impact of different land uses on various levels of biological organization, which limits the direct transferability and thus applicability of results to other stream ecosystems, the findings point to the need to develop adequate management strategies mitigating land use specific exposures during all seasons to protect ecosystem integrity. Article History: Received 20 July 2015; Revised 11 August 2015; Accepted 11 August 2015 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Ecosystem Components – Environmental Aspects ; Land Use – Environmental Aspects ; River Channels – Environmental Aspects ; Human-Environment Interactions – Environmental Aspects ; Land Use Controls – Environmental Aspects
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental Pollution, May 2018, Vol.236, pp.119-125
    Description: Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder was fed (over 7 d;  = 30) with imidacloprid-contaminated black alder ( ) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. UV-irradiation and leaching in water reduce imidacloprid residues in contaminated leaves consequently mitigating toxicity for a leaf-shredding amphipod.
    Keywords: Neonicotinoids ; Imidacloprid ; Gammarus ; Leaf Fall ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Pollution, 2012, Vol.167, pp.41-46
    Description: Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0269-7491
    E-ISSN: 18736424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Pollution, March, 2014, Vol.186, p.136(5)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envpol.2013.11.028 Byline: Gabriela KalAikova, Dominic Englert, Ricki R. Rosenfeldt, Frank Seitz, Ralf Schulz, Mirco Bundschuh Abstract: Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO.sub.2; 〈100 nm) on the interaction between the prey Ephemerella ignita (Ephemeroptera) and the predator Gammarus fossarum (Amphipoda) over 96 h considering UV-irradiation at field relevant levels (approximately 11.4 W/m.sup.2) as an additional environmental factor (n = 16). At the same time, gammarid's consumption of an alternative food source, i.e. leaf discs, was assessed. All endpoints covered were not affected by nTiO.sub.2 alone, while the combination of nTiO.sub.2 and UV caused a reduction in gammarid's predation (68%), leaf consumption (60%) and body weight (22%). These effects were most likely triggered by the UV-induced formation of reactive oxygen species by nTiO.sub.2. The present study, hence, highlights the importance to cover UV-irradiation during the risk assessment of nanoparticles. Author Affiliation: (a) Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany (b) Faculty of Chemistry and Chemical Technology, University of Ljubljana, AA kerAeva 5, SI-1000 Ljubljana, Slovenia (c) Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms vag 9, 750 07 Uppsala, Sweden Article History: Received 24 September 2013; Revised 6 November 2013; Accepted 18 November 2013
    Keywords: Nanoparticles ; Titanium Dioxide
    ISSN: 0269-7491
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Chemosphere, Nov, 2011, Vol.85(10), p.1563(5)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.chemosphere.2011.07.060 Byline: Mirco Bundschuh, Jochen P. Zubrod, Dominic Englert, Frank Seitz, Ricki R. Rosenfeldt, Ralf Schulz Keywords: Nanoparticle; Titanium dioxide; Ultraviolet irradiation; Gammarus fossarum; Accumulation; Reactive oxygen species Abbreviations: nTiO.sub.2, titanium dioxide nanoparticles; ROS, reactive oxygen species; UV, ultraviolet; ANOVA, analysis of variance; PNEC, predicted no effect concentration Abstract: Display Omitted Author Affiliation: Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau/Palatinate, Germany Article History: Received 17 April 2011; Revised 20 July 2011; Accepted 27 July 2011
    Keywords: Titanium Dioxide -- Analysis
    ISSN: 0045-6535
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 01 June 2013, Vol.454-455, pp.401-410
    Description: During recent years, increasing incidences of summer droughts – likely driven by climate change – reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~ 90% wastewater) as compared to a season with high dilution potential (winter; ~ 35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~ 65%), gammarids' feeding rate (~ 80%), leaf associated fungal biomass (〉 40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300 m (partially 500 m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive — also considering decreasing dilution potential of streams as projected by climate change scenarios.
    Keywords: Ecosystem Functions ; Leaf Decomposition ; In Situ ; Micropollutants ; Gammarus ; Powdered Activated Carbon ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 15 December 2015, Vol.538, pp.341-349
    Description: Human activity can degrade the habitat quality for aquatic communities, which ultimately impacts the functions these communities provide. Disentangling the complex interaction between environmental and anthropogenic parameters as well as their alteration both along the stream channel, over the seasons, and finally their impact in the aquatic ecosystem represents a fundamental challenge for environmental scientists. Therefore, the present study investigates the implications of successive land uses (i.e., vineyard, urban area, highway and wastewater treatment plant (WWTP)) on structural and functional endpoints related to the ecosystem process of leaf litter breakdown during a winter and summer season in a five km stretch of a second-order stream in southern Germany. This sequence of the different land uses caused, among others, a downstream decline of the ecological status from “high” to “bad” judged based on the SPEAR index together with significant shifts in the macroinvertebrate community composition, which coincided with substantial impairments (up to 100%) in the macroinvertebrate-mediated leaf decomposition. These effects, seem to be mainly driven by alterations in water quality rather than morphological modifications of the stream's habitat since the key shredder was not in direct contact with the local habitat during in situ bioassays but showed similar response patterns than the other endpoints. While the relative effect size for most endpoints deviated considerably (sometimes above 2-fold) among seasons, the general response pattern pointed to reductions in energy supply for local and downstream communities. Although the present study focused on a single low-order stream with the main purpose of describing the impact of different land uses on various levels of biological organization, which limits the direct transferability and thus applicability of results to other stream ecosystems, the findings point to the need to develop adequate management strategies mitigating land use specific exposures during all seasons to protect ecosystem integrity.
    Keywords: Ecosystem Function ; Leaf Litter Decomposition ; Gammarus ; Land Use ; Shredder ; Low Order Stream ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Chemosphere, 2011, Vol.85(10), pp.1563-1567
    Description: ► Effects of nTiO and ambient UV-irradiation affect representatives of detrital food webs. ► Accumulation of nTiO at the bottom of the test vessel seems to affect ecotoxicity. ► nTiO and ambient UV-irradiation increases ecotoxicity due to the formation of ROS. Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO ), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO as well as ecotoxicological consequences due to the interactions of nTiO with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO at concentrations as low as 0.2 mg L on the leaf shredding amphipod both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.
    Keywords: Nanoparticle ; Titanium Dioxide ; Ultraviolet Irradiation ; Gammarus Fossarum ; Accumulation ; Reactive Oxygen Species ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Applied Ecology, April 2015, Vol.52(2), pp.310-322
    Description: The application of fungicides is considered an indispensable measure to secure crop production. These substances, however, may unintentionally enter surface waters via run‐off, potentially affecting the microbial community. To assess such risks adequately, authorities recently called for suitable test designs involving relevant aquatic micro‐organisms. We assessed the structural and functional responses of leaf‐associated microbial communities, which play a key role in the breakdown of allochthonous leaf material in streams, towards the inorganic fungicides copper (Cu) and elemental sulphur (S). These substances are of particular interest as they are authorized for both conventional and organic farming in many countries of the world. We used the food choice of the amphipod shredder Gammarus fossarum (indicative for micro‐organism‐mediated leaf palatability) as well as microbial leaf decomposition as functional endpoints. Moreover, the leaf‐associated microbial communities were characterized by means of bacterial density, fungal biomass and community composition facilitating mechanistic understanding of the observed functional effects. While Gammarus preferred Cu‐exposed leaves over unexposed ones, microbial leaf decomposition was reduced by both Cu and S (up to 30%). Furthermore, Cu exposure decreased bacterial densities (up to 60%), stimulated the growth of leaf‐associated fungi (up to 100%) and altered fungal community composition, while S did not affect any of the assessed structural endpoints. Synthesis and applications. We observed both structural and functional changes in leaf‐associated microbial communities at inorganic fungicide concentrations realistic for surface water bodies influenced by conventional and organic farming. Our data hence justify a careful re‐evaluation of the environmental safety of the agricultural use of these compounds. Moreover, inclusion of an experimental design similar to the one used in this study in lower tier environmental risk assessments of antimicrobial compounds may aid to safeguard the integrity of aquatic microbial communities and the functions they provide. We observed both structural and functional changes in leaf‐associated microbial communities at inorganic fungicide concentrations realistic for surface water bodies influenced by conventional and organic farming. Our data hence justify a careful re‐evaluation of the environmental safety of the agricultural use of these compounds. Moreover, inclusion of an experimental design similar to the one used in this study in lower tier environmental risk assessments of antimicrobial compounds may aid to safeguard the integrity of aquatic microbial communities and the functions they provide.
    Keywords: Antagonistic Effect ; Antimicrobial ; Aquatic Hyphomycetes ; Bacteria ; Biofilm ; Ecosystem Functioning ; Environmental Risk Assessment ; Heavy Metal ; Leaf Litter Breakdown ; Mixture Toxicity
    ISSN: 0021-8901
    E-ISSN: 1365-2664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages