Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    In: PLoS ONE, 2014, Vol.9(10)
    Description: This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs . continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.
    Keywords: Research Article ; Biology And Life Sciences ; Ecology And Environmental Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, Oct 30, 2014, Vol.9(10)
    Description: This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.
    Keywords: Biogeography ; Precipitation (Meteorology)
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 01 January 2015, Vol.10(4), p.e0122539
    Description: Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 2012, Vol.7(4), p.e35742
    Description: Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.
    Keywords: Research Article ; Biology ; Plant Biology ; Ecology
    E-ISSN: 1932-6203
    Source: PLoS
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: PLoS ONE, 2012, Vol.7(4)
    Description: Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.
    Keywords: Research Article ; Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Biogeography, October 2012, Vol.39(10), pp.1919-1931
    Description: Canada thistle (– Cardueae, Asteraceae) is one of the worst invasive plants world‐wide. Native to Eurasia, its unintentional introduction into North America now threatens the native flora and is responsible for enormous agricultural losses. The goals of this study are to: (1) reconstruct the evolutionary history of and estimate how often it may have colonized North America, (2) compare the genetic diversity between European and North American populations to detect signs of demographic bottlenecks and/or patterns of population admixture, and (3) conduct bioclimatic comparisons to infer eventual niche shifts following this species’ introduction into North America. Europe and North America. A total of 1522 individuals from 58 populations were investigated with six microsatellite markers. Estimates of heterozygosity () and allelic richness () were quantified for each population, and population structure was inferred via analyses of molecular variance (AMOVAs), principal components analyses (PCAs), Mantel tests and Bayesian clustering analyses. Climatic niche spaces were based on 19 bioclimatic variables extracted from approximately 32,000 locations covering the entire range, and compared using PCA and hierarchical cluster analysis. Although there is evidence of multiple introductions from divergent European lineages, North American populations of exhibited significantly lower levels of genetic diversity than their putative ancestors. Bioclimatic comparisons pointed to a high degree of niche conservatism during invasion, but indicated that genotypes from the former USSR and Central European mountain chains were probably best adapted to invade North America upon entry into the continent. Genetic and historical data suggest that first entered North America from Western Europe with the first European settlers, and was later introduced from Eastern Europe into the prairie states during the agricultural boom. The species went through a significant bottleneck following its introduction into the New World, but the level of genetic diversity remained high owing to admixture between genetically differentiated lineages and to a highly efficient outcrossing breeding system.
    Keywords: Adaptation ; Asteraceae ; Bioclimatic Niche Modelling ; Cirsium Arvense ; Colonization History ; Compositae ; Genetic Bottleneck ; Invasive Plant ; Multiple Introductions ; Phylogeography
    ISSN: 0305-0270
    E-ISSN: 1365-2699
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(5), p.e96022
    Description: Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Global Change Biology, January 2012, Vol.18(1), pp.127-137
    Description: Macroclimatic niche properties derived from species distribution ranges are fundamental for projections of climate change impacts on biodiversity. However, it has been recognized that changes in regional or local distribution patterns also depend on interactions with land use. The reliability and transferability of large scale geographic predictions to small scale plant performance need to be tested experimentally. Thus, we asked how grassland plant species pairs with different macroclimatic niche properties respond to increased spring temperature and decrease summer precipitation in three different land‐use types. An experiment was carried out in the framework of the erman iodiversity xploratories simulating climate change in 45 experimental plots in three geographical regions (chorfheide‐horin, ainich‐ün, chwäbische lb) and three grassland management types (meadow, pasture, mown pasture). We planted six plant species as phytometers, each two of them representing congeneric species with contrasting macroclimatic niches and recorded plant survival and growth over 1 year. To quantify the species macroclimatic niches with respect to drought tolerance, the species’ distribution ranges were mapped and combined with global climate data. The simulated climate change had a general negative effect on plant survival and plant growth, irrespective of the macroclimatic niche characteristics of the species. Against expectation, species with ranges extending into drier regions did not generally perform better under drier conditions. Growth performance and survival was best in mown pastures, representing a quite intensive type of land use in all study regions. Species with higher macroclimatic drought tolerance were generally characterized by lower growth rates and higher survival rates in land‐use types with regular mowing regimes, probably because of reduced competition in the growing season. In conclusion, plant species with similar climatic niche characteristics cannot be expected to respond consistently over different regions owing to complex interactions of climate change with land use practices.
    Keywords: B Iodiversity E Xploratories ; Climate Change ; Field Experiment ; Grassland Management ; Plant Distribution
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Biogeography, September 2014, Vol.41(9), pp.1710-1720
    Description: To purchase or authenticate to the full-text of this article, please visit this link: http://onlinelibrary.wiley.com/doi/10.1111/jbi.12322/abstract Byline: Miao-Miao Shi, Stefan G. Michalski, Erik Welk, Xiao-Yong Chen, Walter Durka, Mark Carine Keywords: Castanopsis eyrei ; chloroplast capture; climate envelope modelling; genetic structure; glacial refugia; Last Glacial Maximum; microsatellites; phylogeography; subtropical China Abstract Aim Fossil-based biome reconstructions predict that during the Last Glacial Maximum (LGM), the subtropical zone of East Asia was reduced to a narrow southern belt. In contrast, previous phylogeographical studies of subtropical plant species, many of which are rare, indicated different glacial refugia north of this predicted area. Here, we aim to elucidate the phylogeographical structure and putative refugia of Castanopsis eyrei, a widely distributed tree of subtropical evergreen broad-leaved forests of China. Location Subtropical China. Methods We compiled distribution data and employed climate envelope model projections to predict potential areas at the LGM. Microsatellite data and chloroplast DNA (cpDNA) sequence data were obtained for 31 populations sampled throughout the species' range. Microsatellites were analysed with Bayesian clustering. Relationships among cpDNA haplotypes were depicted in a statistical parsimony network. We analysed patterns of variation within and among populations and clusters and along latitudinal clines. Results Modelling revealed a potential LGM distribution of C. eyrei in a broad but interrupted belt overlapping the southern part of the present range. Nuclear microsatellites revealed two main clusters, suggesting a split between the western and eastern range, and a south-to-north decline in genetic variation. The eastern cluster harboured significantly higher nuclear genetic diversity. Sixteen closely related cpDNA haplotypes were identified. Populations were strongly differentiated at cpDNA markers, but lacked phylogeographical structure. Both data sets revealed higher genetic differentiation in the western cluster than in the eastern cluster. Main conclusions Our results suggest at least two putative refugia during the LGM, further refugia-within-refugia substructure and a post-glacial northwards recolonization. Topographical differences between the mountainous western and the lowland eastern refugia may have affected the patterns of genetic differentiation between the extant populations. Incongruence between nuclear and chloroplast data might be attributed to ancestral polymorphism of cpDNA and chloroplast capture, but does not contradict the hypothesis of multiple refugia. Our results are likely to represent a template for evolutionary history and phylogeography in this region. CAPTION(S): Appendix S1 Climatic envelope model and LGM projection, and detailed information of populations sampled in this study. Appendix S2 Laboratory protocol for cpDNA sequencing and haplotypes defined by two chloroplast intergenic spacers. Appendix S3 Determination of most likely number of clusters from the structure analysis and patterns of isolation by distance.
    Keywords: Castanopsis Eyrei ; Chloroplast Capture ; Climate Envelope Modelling ; Genetic Structure ; Glacial Refugia ; Last Glacial Maximum ; Microsatellites ; Phylogeography ; Subtropical China
    ISSN: 0305-0270
    E-ISSN: 1365-2699
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Perspectives in Plant Ecology, Evolution and Systematics, 20 February 2012, Vol.14(1), pp.61-77
    Description: The eu-oceanic therophytic woodland herb has been expanding north- and eastwards into north temperate and subcontinental regions during the past decades. The rapid range expansion of the species may be an example of a species which is strongly profiting from global change. Against this background, in the present paper we review the taxonomy, morphology, distribution, habitat requirements, life cycle and biology of the species.
    Keywords: Corydalis Claviculata ; Fumariaceae ; Plant Traits ; Range Expansion ; Species Biology ; Therophytic Woodland Plant ; Botany
    ISSN: 1433-8319
    E-ISSN: 1618-0437
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages