Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    In: New Phytologist, September 2016, Vol.211(4), pp.1147-1149
    Description: This article is a commentary on .
    Keywords: Aquaporin ; Arbuscular Mycorrhizal Am Fungi ; Polyphosphate Translocation ; Roots ; Source–Sink Gradient ; Transpiration ; Virus‐Induced Gene Silencing Vigs ; Water And Mineral Nutrient Transport
    ISSN: 0028-646X
    E-ISSN: 1469-8137
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(6), p.e100997
    Description: To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Plant Journal, June 2014, Vol.78(5), pp.877-889
    Description: Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal () tomato, transgenic plants with down‐regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild‐type rootstocks and scions indicated that mainly the root‐specific function of Sl2 has an impact on colonization of tomato roots with the fungus. Localization of 2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2‐interacting proteins revealed interactions with candidates involved in brassinosteroid () signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that s affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of synthesis and of the signaling pathway is discussed.
    Keywords: Arbuscular Mycorrhiza ; Sucrose Transporter ; Protein–Protein Interactions ; Brassinosteroid Synthesis ; Brassinosteroid Signaling ; S Olanum Lycopersicum ; F Unneliformis Mosseae
    ISSN: 0960-7412
    E-ISSN: 1365-313X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2013, Vol.8(6)
    Description: The plant pathogen Pepino mosaic virus (PepMV) is a major disease of greenhouse tomato crops worldwide. Plant pathogens can induce expression of defence- or pathogenesis-related proteins, including identified allergens. Therefore we hypothesised that PepMV infection results in the expression of allergens leading to a higher allergenic potential of tomato fruits. Transcript level analyses showed differential expression of 17 known and putative tomato fruit allergen encoding genes at early and late time points after PepMV inoculation, but no general induction was detected. Immunoblot analyses were conducted and IgEs from a serum pool of tomato allergic subjects reacted with 20 proteins, of which ten have not yet been described. In parallel, skin prick tests with a group of tomato allergic subjects did not show a general difference between PepMV infected and non-infected tomato fruits and basophil activation tests confirmed these results. In summary, PepMV infection of tomato plants can lead to long-lasting up-regulation of particular allergens in fruits, but the hypothesis that this results in a higher allergenic potential of the fruits proved invalid.
    Keywords: Research Article ; Biology ; Medicine
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Plant and Soil, 2010, Vol.333(1), pp.59-70
    Description: The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica -induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae , total phosphate contents of host plant roots and shoots were not significantly affected by P. indica . On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica -barley symbiosis.
    Keywords: Mycorrhiza ; Barley ; Piriformospora indica ; Phosphate uptake ; Grain yield
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS ONE, June 30, 2014, Vol.9(6)
    Description: To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
    Keywords: Genes – Physiological Aspects ; Genes – Analysis ; Carbohydrate Metabolism – Physiological Aspects ; Carbohydrate Metabolism – Analysis
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: New Phytologist, August 2016, Vol.211(3), pp.1065-1076
    Description: Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below‐ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild‐type rice and coi1‐18 and Eui1‐OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte‐elicited GA biosynthesis suppressed the herbivore‐induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below‐ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.
    Keywords: Ga Signaling ; Induced Plant Tolerance ; Jasmonate Signaling ; Lissorhoptrus Oryzophilus Rice Water Weevil ; Oryza Sativa Rice ; Phytohormone Crosstalk ; Piriformospora Indica Endophyte ; Root Herbivory
    ISSN: 0028-646X
    E-ISSN: 1469-8137
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Mycorrhiza, 2014, Vol.24(6), pp.419-430
    Description: It has been shown in a number of pathosystems that arbuscular mycorrhizal (AM) fungi confer resistance against root pathogens, including in interactions between Medicago truncatula and the root rot-causing oomycete Aphanomyces euteiches . For the current study of these interactions, a split root system was established for plant marker gene analysis in order to study systemic defense responses and to compare them with local interactions in conventional pot cultures. It turned out, however, that split root systems and pot cultures were in different physiological stages. Genes for pathogenesis-related proteins and for enzymes involved in flavonoid biosynthesis were generally more highly expressed in split root systems, accompanied by changes in RNA accumulation for genes encoding enzymes involved in phytohormone biosynthesis. Against expectations, the pathogen showed increased activity in these split root systems when the AM fungus Funneliformis mosseae was present separately in the distal part of the roots. Gene expression analysis revealed that this is associated in the pathogen-infected compartment with a systemic down-regulation of a gene coding for isochorismate synthase (ICS), a key enzyme of salicylic acid biosynthesis. At the same time, transcripts of genes encoding pathogenesis-related proteins and for enzymes involved in the biosynthesis of flavonoids accumulated to lower levels. In conventional pot cultures showing decreased A. euteiches activity in the presence of the AM fungus, the ICS gene was down regulated only if both the AM fungus and the pathogen were present in the root system. Such negative priming of salicylic acid biosynthesis could result in increased activities of jasmonate-regulated defense responses and could explain mycorrhiza-induced resistance. Altogether, this study shows that the split root system does not reflect a systemic interaction between F. mosseae and A. euteiches in M. truncatula and indicates the importance of testing such systems prior to the analysis of mycorrhiza-induced resistance.
    Keywords: Root rot ; Medicago ; Mycorrhiza-induced resistance ; Split root system ; Gene expression
    ISSN: 0940-6360
    E-ISSN: 1432-1890
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Journal of the Science of Food and Agriculture, September 2011, Vol.91(12), pp.2234-2240
    Description: Food allergies are increasing in the European population. At present the onset of symptoms can be avoided only by elimination of a particular fruit or vegetable from the diet. A new approach is to develop hypoallergenic food products. This study characterises the allergenic potential of tomatoes, considering cultivation conditions, developmental stages and genotypes, in order to identify hypoallergenic fruits. Patients with a history of tomato allergy were recruited for skin allergy tests. Tomatoes carrying distinct genotypes were grown under various cultivation conditions and harvested at different maturation stages. Cultivation conditions (nitrogen fertilisation, light exposure and plant nutrition) did not affect the skin reactivity in tomato‐allergic patients. However, skin reactivity was significantly lower when using green‐unripe compared with red‐ripe tomatoes and when using landrace cultivars compared with cultivars bred for use in organic horticulture. Depending on their genetic background and maturity level, some tomato cultivars elicit positive reactions in tomato‐allergic patients in the skin allergy test. This novel finding should pave the way for the development of tomatoes with reduced allergenicity to relieve sufferers of tomato allergy. Copyright © 2011 Society of Chemical Industry
    Keywords: Food Allergy ; Tomato ; Cultivars ; Environmental Cultivation Conditions
    ISSN: 0022-5142
    E-ISSN: 1097-0010
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Frontiers in Microbiology, Dec 18, 2018
    Description: Arbuscular mycorrhizal (AM) fungi confer heavy metal tolerance to plants, but this characteristic differs between different AM fungal strains. We tested the hypotheses if acclimatization of an AM fungus to Zn stress is possible and if this leads also to higher Zn tolerance of mycorrhizal plants. The AM fungus Rhizophagus irregularis was acclimatized in root organ cultures ( Daucus carota L.) to Zn resulting in an acclimatized (Acc+) strain. The non-acclimatized (Acc-) strain remained untreated. Fungal development and RNA accumulation of a set of stress-related genes were analyzed in root organ cultures and the capacity of conferring Zn tolerance to maize plants was investigated in pot cultures. Development of Acc+ strain was significantly higher than Acc- strain, when strains were grown in Zn-enriched root organ cultures, whereas the growth of the Acc+ strain was reduced on normal medium probably due to a higher Zn demand compared to the Acc- strain. RNA accumulation analyses revealed different expression patterns of genes encoding glutathione S-transferase ( RiGST ), superoxide dismutase ( RiSOD ) and glutaredoxin ( RiGRX ) between the two strains. Plants inoculated with the Acc+ strain showed higher biomass and lower Zn content than those inoculated with the Acc- strain. The results showed that R. irregularis can be acclimatized to increased amounts of Zn. This acclimatization leads not only to improved fungal development in Zn-stress conditions, but also to an increase of mycorrhiza-induced Zn tolerance of colonized plants.
    Keywords: Microbiology ; Acclimatization ; Arbuscular Mycorrhiza ; Gene Expression ; Heavy Metal Tolerance ; Root Organ Culture;
    ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages