Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Cambridge :Woodhead Pub.,
    UID:
    almahu_9948025974102882
    Format: 1 online resource (358 p.)
    ISBN: 0-85709-082-8 , 1-61344-377-3
    Series Statement: Woodhead Publishing Series in Metals and Surface Engineering
    Content: Effective coatings are essential to counteract the effects of corrosion and degradation of exposed materials in high-temperature environments such as gas turbine engines. Thermal barrier coatings reviews the latest advances in processing and performance of thermal barrier coatings, as well as their failure mechanisms.Part one reviews the materials and structures of thermal barrier coatings. Chapters cover both metallic and ceramic coating materials as well as nanostructured coatings. Part two covers established and advanced processing and spraying techniques, with chapters on the latest advanc
    Note: Description based upon print version of record. , pt. 1. Materials and structure -- pt. 2. Processing and spraying techniques -- pt. 3. Performance of thermal barrier coatings. , English
    Additional Edition: ISBN 1-84569-658-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cambridge, MA :Woodhead Publishing,
    UID:
    almahu_9949449041702882
    Format: 1 online resource (490 pages)
    Edition: 2nd ed.
    ISBN: 9780128190289
    Series Statement: Woodhead Publishing Series in Metals and Surface Engineering
    Content: Thermal Barrier Coatings, Second Edition plays a critical role in counteracting the effects of corrosion and degradation of exposed materials in high-temperature environments such as gas turbine and aero-engines. This updated edition reviews recent advances in the processing and performance of thermal barrier coatings, as well as their failure mechanisms. Novel technologies for the manufacturing of thermal barrier coatings (TBCs) such as plasma spray-physical vapor deposition and suspension plasma spray, are covered, as well as severe degradation of TBCs caused by CMAS attack. In addition to discussions of new materials and technologies, an outlook about next generation TBCs, including T/EBCs is discussed. This edition will provide the fundamental science and engineering of thermal barrier coatings for researchers in the field of TBCs, as well as students looking for a tutorial.
    Note: Intro -- Thermal Barrier Coatings -- Copyright -- Contents -- Contributors -- Chapter 1: Overview of thermal barrier coatings for advanced gas turbine engine -- 1.1. Introduction -- 1.2. TBC bond coat materials -- 1.3. Ceramic materials for TBCs -- 1.3.1. Multirare-earth-doped ZrO2 -- 1.3.2. A2B2O7 pyrochlore or fluorite compounds -- 1.3.3. Rare earth aluminates -- 1.3.4. Perovskite structure compounds -- 1.4. TBC fabrication methods -- 1.4.1. Plasma spraying -- 1.4.2. EB-PVD -- 1.4.3. PS-PVD -- 1.5. Challenges and development trends of TBC -- References -- Chapter 2: Thermophysical properties investigations and optimizations of RETaO4 ceramics for thermal barrier coatings -- 2.1. Chapter 1: Fabrication, crystal structure, microstructure, and thermal conductivity of RETaO4(Nd, Eu, Gd, Dy, Er, Yb ... -- 2.2. Chapter 2: Thermophysical properties optimizations of YbTaO4 ceramics by Nb substituted Ta -- References -- Chapter 3: Oxidation behavior of the bondcoat and associated lifetime of thermal barrier coating systems -- 3.1. EB-PVD-TBCs -- 3.1.1. Failure mechanisms for EB-PVD TBC systems -- 3.1.2. Effect of Co and Ni contents in MCrAlY bondcoats on TBC lifetime -- 3.1.3. Effect of oxygen content in MCrAlY bondcoats on EB-PVD TBC lifetime -- 3.1.4. Effect of reactive elements (RE) additions in the bondcoat on TGO growth and adherence -- 3.1.5. Effect of bondcoat processing on RE-distribution -- 3.1.6. Effect of cyclic conditions on lifetime of EB-PVD TBC systems with MCrAlY bondcoats -- 3.1.7. Effect of water vapor on lifetime of EB-PVD TBC systems -- 3.1.8. Comparison of oxidation behavior and failure modes of EB-PVD TBC systems with NiPtAl and MCrAlY bondcoats -- 3.2. APS-TBCs -- 3.2.1. Failure mechanisms for APS TBC systems -- 3.2.2. Effect of Co and Ni contents in MCrAlY bondcoats on lifetime of APS TBC systems. , 3.2.3. Effect of bondcoat and TBC microstructure on lifetime of APS TBC systems -- 3.2.3.1. NiCoCrAlY bondcoat -- 3.2.3.2. CoNiCrAlY bondcoat -- 3.2.4. Effect of atmosphere composition on lifetime of APS-TBC systems with MCrAlY bondcoats -- 3.3. Concluding remarks -- References -- Chapter 4: Interdiffusion between metallic coatings and single crystal superalloys and the strategies to constrain the& -- spi -- 4.1. Interdiffusion between metallic coatings and single crystal superalloys -- 4.2. Diffusion barrier series -- 4.2.1. Metal diffusion barrier -- 4.2.1.1. Re-base DB serving for Pt-modified aluminide coating -- 4.2.2. Ceramic diffusion barrier -- 4.2.3. Active diffusion barrier -- 4.2.3.1. YSZ diffusion barrier -- 4.2.3.2. NiCrO diffusion barrier -- 4.3. Other strategies to control interdiffusion -- 4.3.1. Nanocrystalline coating -- 4.3.2. EQ coating -- 4.3.3. High-strength γ-base coating -- 4.4. Prospects -- References -- Chapter 5: Thermal barrier coatings prepared by electron beam-physical vapor deposition (EB-PVD) -- 5.1. Introduction -- 5.1.1. Physical principles of EB-PVD technology -- 5.1.2. Typical structure of TBCs -- 5.2. Preparation process and parameters -- 5.2.1. Substrate temperature -- 5.2.2. Vapor incidence angle -- 5.3. Properties of TBCs by EB-PVD -- 5.3.1. Thermal properties of TBCs -- 5.3.1.1. Principle of heat transfer -- 5.3.1.2. Coating structure with low thermal conductivity -- 5.3.2. Mechanical properties of TBCs -- 5.4. Failure mechanisms of EB-PVD TBCs -- 5.5. Application and expectation -- References -- Chapter 6: Tailoring the microstructures of thermal barrier coatings by atmospheric plasma spray -- 6.1. Introduction -- 6.2. Microstructures of TBC by powder plasma spray processes -- 6.2.1. Fundamentals of splat formation -- 6.2.2. Lamellar TBC -- 6.2.3. Vertically cracked TBC -- 6.2.4. Nanostructured TBC. , 6.2.5. Multilayered TBC -- 6.2.6. Composite TBC -- 6.2.7. Laser-glazed TBC -- 6.3. Microstructures of TBC by liquid feedstock plasma spray processes -- 6.3.1. Overview of liquid feedstock plasma spray -- 6.3.2. TBC by suspension plasma spray -- 6.3.3. TBC by solution precursor plasma spray -- 6.4. Degradation and self-optimization of TBC during thermal exposure -- 6.4.1. Microstructural change of TBC during thermal exposure -- 6.4.2. Degradation of thermal performance -- 6.4.3. Self-enhancement of TBCs during thermal exposure -- 6.5. Deposition and postspraying optimization of bond coat by APS -- 6.5.1. Lamellar structure of bond coat -- 6.5.2. Oxidation behavior of APS bond coat -- 6.5.3. Preoxidation and optimization of APS bond coat -- 6.6. Conclusions -- References -- Chapter 7: Thermal barrier coatings manufactured by suspension and solution precursor plasma spray-State of the art -- 7.1. Introduction -- 7.2. Liquid feedstocks and their interaction between liquid and plasma jet -- 7.2.1. Liquid feedstocks -- 7.2.2. Injection and fragmentation of liquids -- 7.3. Coating morphology and deposition mechanism -- 7.3.1. Splat morphology -- 7.3.1.1. Splats formed from solutions -- 7.3.1.2. Suspensions -- 7.3.2. Typical microstructure of SPS/SPPS TBCs and the underlying deposition mechanism -- 7.3.3. Effects of spraying parameters on the microstructure of SPS/SPPS coatings -- 7.4. Performances of SPS/SPPS TBCs -- 7.4.1. Mechanical and thermal properties of SPS/SPPS TBCs -- 7.4.2. Thermal cycling lifetime of SPS/SPPS TBCs -- 7.5. Summary -- References -- Chapter 8: Development of plasma spray-physical vapor deposition for advanced thermal barrier coatings -- 8.1. Introduction -- 8.2. Plasma jet characteristics in PS-PVD -- 8.3. Interaction between plasma and feedstock -- 8.3.1. Plasma torch -- 8.3.2. Expanding plasma jet. , 8.4. Coating growth, microstructures, properties, and performance -- 8.4.1. Coating growth and microstructures -- 8.4.2. Properties and performance -- 8.5. Future possibilities of PS-PVD -- 8.6. Summary -- References -- Chapter 9: Properties and performance evaluations of thermal barrier coatings -- 9.1. Physical properties analysis -- 9.1.1. Density and porosity -- 9.1.2. Phase and lattice structure analysis -- 9.2. Mechanical properties evaluation techniques -- 9.2.1. Elastic moduli and hardness -- 9.2.2. Fracture toughness -- 9.2.3. Bond strength -- 9.2.4. Erosion test -- 9.2.5. Residual stress -- 9.3. Thermal properties evaluation -- 9.4. Thermal stability analysis -- 9.4.1. Sintering and thermal aging analysis -- 9.4.2. Thermal cycling and thermal shock test -- 9.4.3. Thermal gradient fatigue test -- 9.5. Chemical stability analysis -- 9.5.1. Oxidation stability -- 9.5.2. Hot-salt corrosion analysis -- 9.5.3. CMAS analysis -- 9.5.4. Water-vapor corrosion performance -- 9.6. Conclusion and future trends -- Acknowledgments -- References -- Chapter 10: Volcanic ash hazards to aviation safety -- 10.1. State of the art -- 10.1.1. Background of research -- 10.1.2. The volcanic ash-issues in gas turbine -- 10.1.2.1. Fouling of volcanic ash -- 10.1.2.2. Slagging of volcanic ash -- 10.2. Fusibility of coal ash: Basic principles -- 10.2.1. Coal ash -- 10.2.2. Fusibility -- 10.2.3. Implication of fusibility of coal ash in coal combustion and gasification -- 10.3. Fusion characteristics of volcanic ash -- 10.3.1. Physical and chemical characteristic of volcanic ash -- 10.3.2. Fusion behavior of volcanic ash -- 10.3.3. Fusion characteristic temperatures of volcanic ash -- 10.3.4. Melting dynamics of volcanic ash -- 10.3.5. Thermal constraints on volcanic ash versus dust and sand proxies -- 10.3.6. Predication of fusion behavior of volcanic ash. , 10.4. Conclusion -- References -- Chapter 11: Strategies for improving the lifetime of air plasma sprayed thermal barrier coatings -- 11.1. Introduction -- 11.2. Failure mechanism of APS TBCs -- 11.2.1. Residual stress in YSZ layer -- 11.2.2. TGO growth and associated residual stress -- 11.2.3. Sintering of YSZ layer -- 11.2.4. Interfacial degradation -- 11.2.5. CMAS attack -- 11.3. Approaches for improving the lifetime -- 11.3.1. Designing the interfacial microstructure to inhibit the crack propagation -- 11.3.2. Microstructure optimization of YSZ layer via powder design -- 11.3.3. Enhancing the strain tolerance of topcoat via vertical cracks -- 11.3.4. High performance bond coat -- 11.3.5. Selecting compatible bond coat and superalloy substrate -- 11.3.6. Double-layer structure -- 11.4. Outlook and conclusion -- References -- Chapter 12: Failure mechanisms of thermal barrier coatings under thermo-mechanical-chemical loads -- 12.1. Chemo-thermo-mechanically constitutive theories for degraded thermal barrier coatings -- 12.1.1. Chemo-mechanically coupled theoretical modeling of TBCs oxidation -- 12.1.1.1. Description of oxygen diffusion and TGO growth -- 12.1.1.2. Theoretical framework of TBCs oxidation -- Governing equations of chemo-mechanical coupled model -- Weak forms -- Finite element model -- 12.1.1.3. Results and discussions -- TGO thickness -- Stress distribution -- Coupling effect on TGO thickness and stress distribution -- 12.1.1.4. Conclusions -- 12.1.2. Theoretical modeling of TBCs oxidation based on large deformation theory -- 12.1.2.1. Finite deformation description for growth stress and deformation around TGO layer -- 12.1.2.2. Finite element method based on the finite deformation description -- Governing equations in weak form -- Representative geometric model and boundary conditions -- 12.1.2.3. Results and discussions. , Variation of TGO thickness.
    Additional Edition: Print version: Guo, Hongbo Thermal Barrier Coatings San Diego : Elsevier Science & Technology,c2023 ISBN 9780128190272
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge, MA :Woodhead Publishing,
    UID:
    edocfu_9961017315702883
    Format: 1 online resource (490 pages)
    Edition: 2nd ed.
    ISBN: 9780128190289
    Series Statement: Woodhead Publishing Series in Metals and Surface Engineering
    Content: Thermal Barrier Coatings, Second Edition plays a critical role in counteracting the effects of corrosion and degradation of exposed materials in high-temperature environments such as gas turbine and aero-engines. This updated edition reviews recent advances in the processing and performance of thermal barrier coatings, as well as their failure mechanisms. Novel technologies for the manufacturing of thermal barrier coatings (TBCs) such as plasma spray-physical vapor deposition and suspension plasma spray, are covered, as well as severe degradation of TBCs caused by CMAS attack. In addition to discussions of new materials and technologies, an outlook about next generation TBCs, including T/EBCs is discussed. This edition will provide the fundamental science and engineering of thermal barrier coatings for researchers in the field of TBCs, as well as students looking for a tutorial.
    Note: Intro -- Thermal Barrier Coatings -- Copyright -- Contents -- Contributors -- Chapter 1: Overview of thermal barrier coatings for advanced gas turbine engine -- 1.1. Introduction -- 1.2. TBC bond coat materials -- 1.3. Ceramic materials for TBCs -- 1.3.1. Multirare-earth-doped ZrO2 -- 1.3.2. A2B2O7 pyrochlore or fluorite compounds -- 1.3.3. Rare earth aluminates -- 1.3.4. Perovskite structure compounds -- 1.4. TBC fabrication methods -- 1.4.1. Plasma spraying -- 1.4.2. EB-PVD -- 1.4.3. PS-PVD -- 1.5. Challenges and development trends of TBC -- References -- Chapter 2: Thermophysical properties investigations and optimizations of RETaO4 ceramics for thermal barrier coatings -- 2.1. Chapter 1: Fabrication, crystal structure, microstructure, and thermal conductivity of RETaO4(Nd, Eu, Gd, Dy, Er, Yb ... -- 2.2. Chapter 2: Thermophysical properties optimizations of YbTaO4 ceramics by Nb substituted Ta -- References -- Chapter 3: Oxidation behavior of the bondcoat and associated lifetime of thermal barrier coating systems -- 3.1. EB-PVD-TBCs -- 3.1.1. Failure mechanisms for EB-PVD TBC systems -- 3.1.2. Effect of Co and Ni contents in MCrAlY bondcoats on TBC lifetime -- 3.1.3. Effect of oxygen content in MCrAlY bondcoats on EB-PVD TBC lifetime -- 3.1.4. Effect of reactive elements (RE) additions in the bondcoat on TGO growth and adherence -- 3.1.5. Effect of bondcoat processing on RE-distribution -- 3.1.6. Effect of cyclic conditions on lifetime of EB-PVD TBC systems with MCrAlY bondcoats -- 3.1.7. Effect of water vapor on lifetime of EB-PVD TBC systems -- 3.1.8. Comparison of oxidation behavior and failure modes of EB-PVD TBC systems with NiPtAl and MCrAlY bondcoats -- 3.2. APS-TBCs -- 3.2.1. Failure mechanisms for APS TBC systems -- 3.2.2. Effect of Co and Ni contents in MCrAlY bondcoats on lifetime of APS TBC systems. , 3.2.3. Effect of bondcoat and TBC microstructure on lifetime of APS TBC systems -- 3.2.3.1. NiCoCrAlY bondcoat -- 3.2.3.2. CoNiCrAlY bondcoat -- 3.2.4. Effect of atmosphere composition on lifetime of APS-TBC systems with MCrAlY bondcoats -- 3.3. Concluding remarks -- References -- Chapter 4: Interdiffusion between metallic coatings and single crystal superalloys and the strategies to constrain the& -- spi -- 4.1. Interdiffusion between metallic coatings and single crystal superalloys -- 4.2. Diffusion barrier series -- 4.2.1. Metal diffusion barrier -- 4.2.1.1. Re-base DB serving for Pt-modified aluminide coating -- 4.2.2. Ceramic diffusion barrier -- 4.2.3. Active diffusion barrier -- 4.2.3.1. YSZ diffusion barrier -- 4.2.3.2. NiCrO diffusion barrier -- 4.3. Other strategies to control interdiffusion -- 4.3.1. Nanocrystalline coating -- 4.3.2. EQ coating -- 4.3.3. High-strength γ-base coating -- 4.4. Prospects -- References -- Chapter 5: Thermal barrier coatings prepared by electron beam-physical vapor deposition (EB-PVD) -- 5.1. Introduction -- 5.1.1. Physical principles of EB-PVD technology -- 5.1.2. Typical structure of TBCs -- 5.2. Preparation process and parameters -- 5.2.1. Substrate temperature -- 5.2.2. Vapor incidence angle -- 5.3. Properties of TBCs by EB-PVD -- 5.3.1. Thermal properties of TBCs -- 5.3.1.1. Principle of heat transfer -- 5.3.1.2. Coating structure with low thermal conductivity -- 5.3.2. Mechanical properties of TBCs -- 5.4. Failure mechanisms of EB-PVD TBCs -- 5.5. Application and expectation -- References -- Chapter 6: Tailoring the microstructures of thermal barrier coatings by atmospheric plasma spray -- 6.1. Introduction -- 6.2. Microstructures of TBC by powder plasma spray processes -- 6.2.1. Fundamentals of splat formation -- 6.2.2. Lamellar TBC -- 6.2.3. Vertically cracked TBC -- 6.2.4. Nanostructured TBC. , 6.2.5. Multilayered TBC -- 6.2.6. Composite TBC -- 6.2.7. Laser-glazed TBC -- 6.3. Microstructures of TBC by liquid feedstock plasma spray processes -- 6.3.1. Overview of liquid feedstock plasma spray -- 6.3.2. TBC by suspension plasma spray -- 6.3.3. TBC by solution precursor plasma spray -- 6.4. Degradation and self-optimization of TBC during thermal exposure -- 6.4.1. Microstructural change of TBC during thermal exposure -- 6.4.2. Degradation of thermal performance -- 6.4.3. Self-enhancement of TBCs during thermal exposure -- 6.5. Deposition and postspraying optimization of bond coat by APS -- 6.5.1. Lamellar structure of bond coat -- 6.5.2. Oxidation behavior of APS bond coat -- 6.5.3. Preoxidation and optimization of APS bond coat -- 6.6. Conclusions -- References -- Chapter 7: Thermal barrier coatings manufactured by suspension and solution precursor plasma spray-State of the art -- 7.1. Introduction -- 7.2. Liquid feedstocks and their interaction between liquid and plasma jet -- 7.2.1. Liquid feedstocks -- 7.2.2. Injection and fragmentation of liquids -- 7.3. Coating morphology and deposition mechanism -- 7.3.1. Splat morphology -- 7.3.1.1. Splats formed from solutions -- 7.3.1.2. Suspensions -- 7.3.2. Typical microstructure of SPS/SPPS TBCs and the underlying deposition mechanism -- 7.3.3. Effects of spraying parameters on the microstructure of SPS/SPPS coatings -- 7.4. Performances of SPS/SPPS TBCs -- 7.4.1. Mechanical and thermal properties of SPS/SPPS TBCs -- 7.4.2. Thermal cycling lifetime of SPS/SPPS TBCs -- 7.5. Summary -- References -- Chapter 8: Development of plasma spray-physical vapor deposition for advanced thermal barrier coatings -- 8.1. Introduction -- 8.2. Plasma jet characteristics in PS-PVD -- 8.3. Interaction between plasma and feedstock -- 8.3.1. Plasma torch -- 8.3.2. Expanding plasma jet. , 8.4. Coating growth, microstructures, properties, and performance -- 8.4.1. Coating growth and microstructures -- 8.4.2. Properties and performance -- 8.5. Future possibilities of PS-PVD -- 8.6. Summary -- References -- Chapter 9: Properties and performance evaluations of thermal barrier coatings -- 9.1. Physical properties analysis -- 9.1.1. Density and porosity -- 9.1.2. Phase and lattice structure analysis -- 9.2. Mechanical properties evaluation techniques -- 9.2.1. Elastic moduli and hardness -- 9.2.2. Fracture toughness -- 9.2.3. Bond strength -- 9.2.4. Erosion test -- 9.2.5. Residual stress -- 9.3. Thermal properties evaluation -- 9.4. Thermal stability analysis -- 9.4.1. Sintering and thermal aging analysis -- 9.4.2. Thermal cycling and thermal shock test -- 9.4.3. Thermal gradient fatigue test -- 9.5. Chemical stability analysis -- 9.5.1. Oxidation stability -- 9.5.2. Hot-salt corrosion analysis -- 9.5.3. CMAS analysis -- 9.5.4. Water-vapor corrosion performance -- 9.6. Conclusion and future trends -- Acknowledgments -- References -- Chapter 10: Volcanic ash hazards to aviation safety -- 10.1. State of the art -- 10.1.1. Background of research -- 10.1.2. The volcanic ash-issues in gas turbine -- 10.1.2.1. Fouling of volcanic ash -- 10.1.2.2. Slagging of volcanic ash -- 10.2. Fusibility of coal ash: Basic principles -- 10.2.1. Coal ash -- 10.2.2. Fusibility -- 10.2.3. Implication of fusibility of coal ash in coal combustion and gasification -- 10.3. Fusion characteristics of volcanic ash -- 10.3.1. Physical and chemical characteristic of volcanic ash -- 10.3.2. Fusion behavior of volcanic ash -- 10.3.3. Fusion characteristic temperatures of volcanic ash -- 10.3.4. Melting dynamics of volcanic ash -- 10.3.5. Thermal constraints on volcanic ash versus dust and sand proxies -- 10.3.6. Predication of fusion behavior of volcanic ash. , 10.4. Conclusion -- References -- Chapter 11: Strategies for improving the lifetime of air plasma sprayed thermal barrier coatings -- 11.1. Introduction -- 11.2. Failure mechanism of APS TBCs -- 11.2.1. Residual stress in YSZ layer -- 11.2.2. TGO growth and associated residual stress -- 11.2.3. Sintering of YSZ layer -- 11.2.4. Interfacial degradation -- 11.2.5. CMAS attack -- 11.3. Approaches for improving the lifetime -- 11.3.1. Designing the interfacial microstructure to inhibit the crack propagation -- 11.3.2. Microstructure optimization of YSZ layer via powder design -- 11.3.3. Enhancing the strain tolerance of topcoat via vertical cracks -- 11.3.4. High performance bond coat -- 11.3.5. Selecting compatible bond coat and superalloy substrate -- 11.3.6. Double-layer structure -- 11.4. Outlook and conclusion -- References -- Chapter 12: Failure mechanisms of thermal barrier coatings under thermo-mechanical-chemical loads -- 12.1. Chemo-thermo-mechanically constitutive theories for degraded thermal barrier coatings -- 12.1.1. Chemo-mechanically coupled theoretical modeling of TBCs oxidation -- 12.1.1.1. Description of oxygen diffusion and TGO growth -- 12.1.1.2. Theoretical framework of TBCs oxidation -- Governing equations of chemo-mechanical coupled model -- Weak forms -- Finite element model -- 12.1.1.3. Results and discussions -- TGO thickness -- Stress distribution -- Coupling effect on TGO thickness and stress distribution -- 12.1.1.4. Conclusions -- 12.1.2. Theoretical modeling of TBCs oxidation based on large deformation theory -- 12.1.2.1. Finite deformation description for growth stress and deformation around TGO layer -- 12.1.2.2. Finite element method based on the finite deformation description -- Governing equations in weak form -- Representative geometric model and boundary conditions -- 12.1.2.3. Results and discussions. , Variation of TGO thickness.
    Additional Edition: Print version: Guo, Hongbo Thermal Barrier Coatings San Diego : Elsevier Science & Technology,c2023 ISBN 9780128190272
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cambridge, MA :Woodhead Publishing,
    UID:
    edoccha_9961017315702883
    Format: 1 online resource (490 pages)
    Edition: 2nd ed.
    ISBN: 9780128190289
    Series Statement: Woodhead Publishing Series in Metals and Surface Engineering
    Content: Thermal Barrier Coatings, Second Edition plays a critical role in counteracting the effects of corrosion and degradation of exposed materials in high-temperature environments such as gas turbine and aero-engines. This updated edition reviews recent advances in the processing and performance of thermal barrier coatings, as well as their failure mechanisms. Novel technologies for the manufacturing of thermal barrier coatings (TBCs) such as plasma spray-physical vapor deposition and suspension plasma spray, are covered, as well as severe degradation of TBCs caused by CMAS attack. In addition to discussions of new materials and technologies, an outlook about next generation TBCs, including T/EBCs is discussed. This edition will provide the fundamental science and engineering of thermal barrier coatings for researchers in the field of TBCs, as well as students looking for a tutorial.
    Note: Intro -- Thermal Barrier Coatings -- Copyright -- Contents -- Contributors -- Chapter 1: Overview of thermal barrier coatings for advanced gas turbine engine -- 1.1. Introduction -- 1.2. TBC bond coat materials -- 1.3. Ceramic materials for TBCs -- 1.3.1. Multirare-earth-doped ZrO2 -- 1.3.2. A2B2O7 pyrochlore or fluorite compounds -- 1.3.3. Rare earth aluminates -- 1.3.4. Perovskite structure compounds -- 1.4. TBC fabrication methods -- 1.4.1. Plasma spraying -- 1.4.2. EB-PVD -- 1.4.3. PS-PVD -- 1.5. Challenges and development trends of TBC -- References -- Chapter 2: Thermophysical properties investigations and optimizations of RETaO4 ceramics for thermal barrier coatings -- 2.1. Chapter 1: Fabrication, crystal structure, microstructure, and thermal conductivity of RETaO4(Nd, Eu, Gd, Dy, Er, Yb ... -- 2.2. Chapter 2: Thermophysical properties optimizations of YbTaO4 ceramics by Nb substituted Ta -- References -- Chapter 3: Oxidation behavior of the bondcoat and associated lifetime of thermal barrier coating systems -- 3.1. EB-PVD-TBCs -- 3.1.1. Failure mechanisms for EB-PVD TBC systems -- 3.1.2. Effect of Co and Ni contents in MCrAlY bondcoats on TBC lifetime -- 3.1.3. Effect of oxygen content in MCrAlY bondcoats on EB-PVD TBC lifetime -- 3.1.4. Effect of reactive elements (RE) additions in the bondcoat on TGO growth and adherence -- 3.1.5. Effect of bondcoat processing on RE-distribution -- 3.1.6. Effect of cyclic conditions on lifetime of EB-PVD TBC systems with MCrAlY bondcoats -- 3.1.7. Effect of water vapor on lifetime of EB-PVD TBC systems -- 3.1.8. Comparison of oxidation behavior and failure modes of EB-PVD TBC systems with NiPtAl and MCrAlY bondcoats -- 3.2. APS-TBCs -- 3.2.1. Failure mechanisms for APS TBC systems -- 3.2.2. Effect of Co and Ni contents in MCrAlY bondcoats on lifetime of APS TBC systems. , 3.2.3. Effect of bondcoat and TBC microstructure on lifetime of APS TBC systems -- 3.2.3.1. NiCoCrAlY bondcoat -- 3.2.3.2. CoNiCrAlY bondcoat -- 3.2.4. Effect of atmosphere composition on lifetime of APS-TBC systems with MCrAlY bondcoats -- 3.3. Concluding remarks -- References -- Chapter 4: Interdiffusion between metallic coatings and single crystal superalloys and the strategies to constrain the& -- spi -- 4.1. Interdiffusion between metallic coatings and single crystal superalloys -- 4.2. Diffusion barrier series -- 4.2.1. Metal diffusion barrier -- 4.2.1.1. Re-base DB serving for Pt-modified aluminide coating -- 4.2.2. Ceramic diffusion barrier -- 4.2.3. Active diffusion barrier -- 4.2.3.1. YSZ diffusion barrier -- 4.2.3.2. NiCrO diffusion barrier -- 4.3. Other strategies to control interdiffusion -- 4.3.1. Nanocrystalline coating -- 4.3.2. EQ coating -- 4.3.3. High-strength γ-base coating -- 4.4. Prospects -- References -- Chapter 5: Thermal barrier coatings prepared by electron beam-physical vapor deposition (EB-PVD) -- 5.1. Introduction -- 5.1.1. Physical principles of EB-PVD technology -- 5.1.2. Typical structure of TBCs -- 5.2. Preparation process and parameters -- 5.2.1. Substrate temperature -- 5.2.2. Vapor incidence angle -- 5.3. Properties of TBCs by EB-PVD -- 5.3.1. Thermal properties of TBCs -- 5.3.1.1. Principle of heat transfer -- 5.3.1.2. Coating structure with low thermal conductivity -- 5.3.2. Mechanical properties of TBCs -- 5.4. Failure mechanisms of EB-PVD TBCs -- 5.5. Application and expectation -- References -- Chapter 6: Tailoring the microstructures of thermal barrier coatings by atmospheric plasma spray -- 6.1. Introduction -- 6.2. Microstructures of TBC by powder plasma spray processes -- 6.2.1. Fundamentals of splat formation -- 6.2.2. Lamellar TBC -- 6.2.3. Vertically cracked TBC -- 6.2.4. Nanostructured TBC. , 6.2.5. Multilayered TBC -- 6.2.6. Composite TBC -- 6.2.7. Laser-glazed TBC -- 6.3. Microstructures of TBC by liquid feedstock plasma spray processes -- 6.3.1. Overview of liquid feedstock plasma spray -- 6.3.2. TBC by suspension plasma spray -- 6.3.3. TBC by solution precursor plasma spray -- 6.4. Degradation and self-optimization of TBC during thermal exposure -- 6.4.1. Microstructural change of TBC during thermal exposure -- 6.4.2. Degradation of thermal performance -- 6.4.3. Self-enhancement of TBCs during thermal exposure -- 6.5. Deposition and postspraying optimization of bond coat by APS -- 6.5.1. Lamellar structure of bond coat -- 6.5.2. Oxidation behavior of APS bond coat -- 6.5.3. Preoxidation and optimization of APS bond coat -- 6.6. Conclusions -- References -- Chapter 7: Thermal barrier coatings manufactured by suspension and solution precursor plasma spray-State of the art -- 7.1. Introduction -- 7.2. Liquid feedstocks and their interaction between liquid and plasma jet -- 7.2.1. Liquid feedstocks -- 7.2.2. Injection and fragmentation of liquids -- 7.3. Coating morphology and deposition mechanism -- 7.3.1. Splat morphology -- 7.3.1.1. Splats formed from solutions -- 7.3.1.2. Suspensions -- 7.3.2. Typical microstructure of SPS/SPPS TBCs and the underlying deposition mechanism -- 7.3.3. Effects of spraying parameters on the microstructure of SPS/SPPS coatings -- 7.4. Performances of SPS/SPPS TBCs -- 7.4.1. Mechanical and thermal properties of SPS/SPPS TBCs -- 7.4.2. Thermal cycling lifetime of SPS/SPPS TBCs -- 7.5. Summary -- References -- Chapter 8: Development of plasma spray-physical vapor deposition for advanced thermal barrier coatings -- 8.1. Introduction -- 8.2. Plasma jet characteristics in PS-PVD -- 8.3. Interaction between plasma and feedstock -- 8.3.1. Plasma torch -- 8.3.2. Expanding plasma jet. , 8.4. Coating growth, microstructures, properties, and performance -- 8.4.1. Coating growth and microstructures -- 8.4.2. Properties and performance -- 8.5. Future possibilities of PS-PVD -- 8.6. Summary -- References -- Chapter 9: Properties and performance evaluations of thermal barrier coatings -- 9.1. Physical properties analysis -- 9.1.1. Density and porosity -- 9.1.2. Phase and lattice structure analysis -- 9.2. Mechanical properties evaluation techniques -- 9.2.1. Elastic moduli and hardness -- 9.2.2. Fracture toughness -- 9.2.3. Bond strength -- 9.2.4. Erosion test -- 9.2.5. Residual stress -- 9.3. Thermal properties evaluation -- 9.4. Thermal stability analysis -- 9.4.1. Sintering and thermal aging analysis -- 9.4.2. Thermal cycling and thermal shock test -- 9.4.3. Thermal gradient fatigue test -- 9.5. Chemical stability analysis -- 9.5.1. Oxidation stability -- 9.5.2. Hot-salt corrosion analysis -- 9.5.3. CMAS analysis -- 9.5.4. Water-vapor corrosion performance -- 9.6. Conclusion and future trends -- Acknowledgments -- References -- Chapter 10: Volcanic ash hazards to aviation safety -- 10.1. State of the art -- 10.1.1. Background of research -- 10.1.2. The volcanic ash-issues in gas turbine -- 10.1.2.1. Fouling of volcanic ash -- 10.1.2.2. Slagging of volcanic ash -- 10.2. Fusibility of coal ash: Basic principles -- 10.2.1. Coal ash -- 10.2.2. Fusibility -- 10.2.3. Implication of fusibility of coal ash in coal combustion and gasification -- 10.3. Fusion characteristics of volcanic ash -- 10.3.1. Physical and chemical characteristic of volcanic ash -- 10.3.2. Fusion behavior of volcanic ash -- 10.3.3. Fusion characteristic temperatures of volcanic ash -- 10.3.4. Melting dynamics of volcanic ash -- 10.3.5. Thermal constraints on volcanic ash versus dust and sand proxies -- 10.3.6. Predication of fusion behavior of volcanic ash. , 10.4. Conclusion -- References -- Chapter 11: Strategies for improving the lifetime of air plasma sprayed thermal barrier coatings -- 11.1. Introduction -- 11.2. Failure mechanism of APS TBCs -- 11.2.1. Residual stress in YSZ layer -- 11.2.2. TGO growth and associated residual stress -- 11.2.3. Sintering of YSZ layer -- 11.2.4. Interfacial degradation -- 11.2.5. CMAS attack -- 11.3. Approaches for improving the lifetime -- 11.3.1. Designing the interfacial microstructure to inhibit the crack propagation -- 11.3.2. Microstructure optimization of YSZ layer via powder design -- 11.3.3. Enhancing the strain tolerance of topcoat via vertical cracks -- 11.3.4. High performance bond coat -- 11.3.5. Selecting compatible bond coat and superalloy substrate -- 11.3.6. Double-layer structure -- 11.4. Outlook and conclusion -- References -- Chapter 12: Failure mechanisms of thermal barrier coatings under thermo-mechanical-chemical loads -- 12.1. Chemo-thermo-mechanically constitutive theories for degraded thermal barrier coatings -- 12.1.1. Chemo-mechanically coupled theoretical modeling of TBCs oxidation -- 12.1.1.1. Description of oxygen diffusion and TGO growth -- 12.1.1.2. Theoretical framework of TBCs oxidation -- Governing equations of chemo-mechanical coupled model -- Weak forms -- Finite element model -- 12.1.1.3. Results and discussions -- TGO thickness -- Stress distribution -- Coupling effect on TGO thickness and stress distribution -- 12.1.1.4. Conclusions -- 12.1.2. Theoretical modeling of TBCs oxidation based on large deformation theory -- 12.1.2.1. Finite deformation description for growth stress and deformation around TGO layer -- 12.1.2.2. Finite element method based on the finite deformation description -- Governing equations in weak form -- Representative geometric model and boundary conditions -- 12.1.2.3. Results and discussions. , Variation of TGO thickness.
    Additional Edition: Print version: Guo, Hongbo Thermal Barrier Coatings San Diego : Elsevier Science & Technology,c2023 ISBN 9780128190272
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages