Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings. Biological sciences, 31 August 2016, Vol.283(1837)
    Description: Migration of hosts and parasites can have a profound impact on host-parasite ecological and evolutionary interactions. Using the bacterium Pseudomonas aeruginosa UCBPP-PA14 and its phage DMS3vir, we here show that immigration of naive hosts into coevolving populations of hosts and parasites can influence the mechanistic basis underlying host defence evolution. Specifically, we found that at high levels of bacterial immigration, bacteria switched from clustered regularly interspaced short palindromic repeats (CRISPR-Cas) to surface modification-mediated defence. This effect emerges from an increase in the force of infection, which tips the balance from CRISPR to surface modification-based defence owing to the induced and fixed fitness costs associated with these mechanisms, respectively.
    Keywords: Clustered Regularly Interspaced Short Palindromic Repeats ; Constitutive Defence ; Induced Defence ; Migration ; Phage ; Biological Coevolution ; Clustered Regularly Interspaced Short Palindromic Repeats ; Pseudomonas Phages -- Genetics ; Pseudomonas Aeruginosa -- Genetics
    ISSN: 09628452
    E-ISSN: 1471-2954
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: RNA Biology, 01 September 2011, Vol.8(5), pp.728-734
    Description: The miR-10 microRNA precursor family encodes a group of short non-coding RNAs involved in gene regulation. The miR-10 family is highly conserved and has sparked the interest of many research groups because of the genomic localization in the vicinity of, coexpression with and regulation of the Hox gene developmental regulators. Here, we review the current knowledge of the evolution, physiological function and involvement in cancer of this family of microRNAs.
    Keywords: Anatomy & Physiology
    ISSN: 1547-6286
    E-ISSN: 1555-8584
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: mBio, 01 November 2018, Vol.9(6), p.e02184-18
    Description: P. aeruginosa is a soil dwelling bacterium and a plant pathogen, and it also causes life-threatening infections in humans. Thus, P. aeruginosa thrives in diverse environments and over a broad range of temperatures. Some P. aeruginosa strains rely on the CRISPR-Cas adaptive immune system as a phage defense mechanism. Our discovery that low temperatures increase CRISPR adaptation suggests that the rarely occurring but crucial naive adaptation events may take place predominantly under conditions of slow growth, e.g., during the bacterium’s soil dwelling existence and during slow growth in biofilms.Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) systems are adaptive defense systems that protect bacteria and archaea from invading genetic elements. In Pseudomonas aeruginosa, quorum sensing (QS) induces the CRISPR-Cas defense system at high cell density when the risk of bacteriophage infection is high. Here, we show that another cue, temperature, modulates P. aeruginosa CRISPR-Cas. Increased CRISPR adaptation occurs at environmental (i.e., low) temperatures compared to that at body (i.e., high) temperature. This increase is a consequence of the accumulation of CRISPR-Cas complexes, coupled with reduced P. aeruginosa growth rate at the lower temperature, the latter of which provides additional time prior to cell division for CRISPR-Cas to patrol the cell and successfully eliminate and/or acquire immunity to foreign DNA. Analyses of a QS mutant and synthetic QS compounds show that the QS and temperature cues act synergistically. The diversity and level of phage encountered by P. aeruginosa in the environment exceed that in the human body, presumably warranting increased reliance on CRISPR-Cas at environmental temperatures.
    Keywords: Crispr ; Phage ; Pseudomonas ; Quorum Sensing ; Growth Rate ; Biology
    ISSN: 21612129
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: mBio, 19 February 2013, Vol.4(1), pp.e00362-12
    Description: One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population density, may be an important determinant of phage-host interactions. This hypothesis was investigated in the model system of Escherichia coli and phage λ. We found that, indeed, quorum sensing constitutes a significant, but so far overlooked, determinant of host susceptibility to phage attack. Specifically, E. coli reduces the numbers of λ receptors on the cell surface in response to N-acyl-l-homoserine lactone (AHL) quorum-sensing signals, causing a 2-fold reduction in the phage adsorption rate. The modest reduction in phage adsorption rate leads to a dramatic increase in the frequency of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of χ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive understanding of the factors that naturally shape microbial communities is required. One of the key factors in this context is the interactions between bacteria and the most abundant biological entities on Earth, namely, the bacteriophages that prey on bacteria. This proof-of-principle study shows that quorum sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages λ and χ. On the basis of our findings in the classical Escherichia coli-λ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under conditions of high risk of infection.
    Keywords: Quorum Sensing ; Bacteriophage Lambda -- Growth & Development ; Escherichia Coli -- Physiology
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: 2013, Vol.9(10), p.e1003913
    Description: miRNAs are small regulatory RNAs that, due to their considerable potential to target a wide range of mRNAs, are implicated in essentially all biological process, including cancer. miR-10a is particularly interesting considering its conserved location in the Hox cluster of developmental regulators. A role for this microRNA has been described in developmental regulation as well as for various cancers. However, previous miR-10a studies are exclusively based on transient knockdowns of this miRNA and to extensively study miR-10a loss we have generated a miR-10a knock out mouse. Here we show that, in the Apc min mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10 +/+ and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate that the primary miR-10a target KLF4 can upregulate transcription of Lpo , whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex-related cancer phenotype we observed. This suggests that miR-10a could be used as a potent diagnostic marker for discovering groups of women that are at high risk of developing colorectal carcinoma, which today is one of the leading causes of cancer-related deaths. ; Posttranscriptional regulation by microRNA molecules constitutes an important mechanism for gene regulation and numerous studies have demonstrated a correlation between deregulated microRNA levels and diseases, such as cancer. However, genetics studies linking individual microRNAs to the etiology of cancer remain scarce. Here, we provide causal evidence for the involvement of the conserved microRNA miR-10a in the development of intestinal adenomas in the face of activated Wnt signaling. Interestingly, we find that loss of miR-10a mediates an increase in intestinal adenomas in female mice only and delineate the pathway to involve aberrant upregulation of the miR-10a target Klf4 and subsequent transcriptional activation of the gene encoding the antibacterial protein Lactoperoxidase. Lpo, in turn, has previously been demonstrated to oxidize estrogens into DNA-damaging mutagens.
    Keywords: Research Article
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages