Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Article
    Article
    Language: English
    In: Current Biology, 02 February 2015, Vol.25(3), pp.R99-R100
    Description: Carnivorous plants have adapted to nutrient-poor habitats by developing the ability to capture and digest prey.
    Keywords: Biology
    ISSN: 0960-9822
    E-ISSN: 1879-0445
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Article
    Article
    Language: English
    In: Current Biology, 05 December 2016, Vol.26(23), pp.R1210-R1212
    Description: Rainer Hedrich studies phytosensorics and plant electrical signaling at the University of Würzburg.
    Keywords: Biology
    ISSN: 0960-9822
    E-ISSN: 1879-0445
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Article
    Article
    Language: English
    In: Physiological reviews, October 2012, Vol.92(4), pp.1777-811
    Description: Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
    Keywords: Ion Channels -- Physiology ; Plant Cells -- Physiology ; Plants -- Metabolism
    ISSN: 00319333
    E-ISSN: 1522-1210
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 2011, Vol.108(37), pp.15492-15497
    Description: Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca2+ signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca2+ signals. ; p. 15492-15497.
    Keywords: Abscisic Acid ; Secretion ; Ion Channels ; Action Potentials ; Biomechanics ; Insects ; Leaves ; Jasmonic Acid ; Water Stress ; Traps ; Dionaea Muscipula ; Digestive Enzymes ; Stomach ; Isoleucine
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States, May 14, 2013, Vol.110(20), p.8296(6)
    Description: The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to Iocalize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel I (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21. doi/10.1073/pnas.1211667110
    Keywords: Arabidopsis Thaliana -- Physiological Aspects ; Arabidopsis Thaliana -- Health Aspects ; Abscisic Acid -- Physiological Aspects ; Abscisic Acid -- Health Aspects ; Ion Channels -- Physiological Aspects ; Ion Channels -- Health Aspects ; Protein Kinases -- Physiological Aspects ; Protein Kinases -- Health Aspects
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Current Opinion in Plant Biology, 2015, Vol.25, p.63(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.pbi.2015.04.008 Byline: Rainer Hedrich, Norbert Sauer, H Ekkehard Neuhaus Abstract: * The plant vacuole is the major site for sugar storage. * The activities of vacuolar sugar porters determine plant yield and stress tolerance. * The vacuole is energized by two proton pumps, the V-ATPase and the tonoplast pyrophosphatase. However, in some species a plasma membrane P.sub.3A/B type ATPase contributes in addition to the proton-motive force. * Vacuolar sugar transporters helped to identify target mechanisms allowing to direct membrane proteins to the tonoplast. Author Affiliation: (1) Molecular Plant Physiology and Biophysics, University of Wurzburg, Germany (2) Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany (3) Plant Physiology, University of Kaiserslautern, Germany
    Keywords: Membrane Proteins – Physiological Aspects ; Plant Physiology – Physiological Aspects ; Atpases – Physiological Aspects ; Transport Proteins – Physiological Aspects
    ISSN: 1369-5266
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 09 June 2015, Vol.112(23), pp.7309-14
    Description: The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.
    Keywords: Akt ; Cipk ; Dionaea Muscipula ; Hak5 ; Transporter ; Calcium -- Metabolism ; Droseraceae -- Metabolism ; Potassium -- Metabolism ; Protein Kinases -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 16 February 2010, Vol.107(7), pp.3251-6
    Description: The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H(+)-ATPase (V-ATPase) and the vacuolar H(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn(2+)/H(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na(+)/H(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
    Keywords: Arabidopsis -- Enzymology ; Inorganic Pyrophosphatase -- Metabolism ; Vacuolar Proton-Translocating Atpases -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Plant Journal, October 2012, Vol.72(2), pp.199-211
    Description: Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of in guard cells of is required for full stomatal responses to ABA. is involved in the export of phosphate into the root xylem vessels and, as a result, the mutant is characterized by low shoot phosphate levels. In leaves, was found expressed in guard cells and up‐regulated following treatment with ABA. The mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of in guard cells of plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of in the stomatal response to ABA.
    Keywords: Abscisic Acid ; Guard Cell ; Stomata ; Pho1 ; Phosphate ; Arabidopsis
    ISSN: 0960-7412
    E-ISSN: 1365-313X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Cell, 2006, Vol.125(7), pp.1221-1223
    Description: Potassium channel function is fundamental to many physiological processes in plants. In this issue of , identify a protein complex in consisting of a potassium channel, a protein kinase, and a calcium sensor. This study reveals that plants cope with limited soil potassium by coupling potassium channel activation to a cellular calcium signaling network.
    Keywords: Biology
    ISSN: 0092-8674
    E-ISSN: 1097-4172
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages