Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    gbv_183950630X
    Format: xv, ii, 85, xvii Seiten , Illustrationen, Diagramme, Karten
    Content: The Arctic nearshore zone plays a key role in the carbon cycle. Organic-rich sediments get eroded off permafrost affected coastlines and can be directly transferred to the nearshore zone. Permafrost in the Arctic stores a high amount of organic matter and is vulnerable to thermo-erosion, which is expected to increase due to climate change. This will likely result in higher sediment loads in nearshore waters and has the potential to alter local ecosystems by limiting light transmission into the water column, thus limiting primary production to the top-most part of it, and increasing nutrient export from coastal erosion. Greater organic matter input could result in the release of greenhouse gases to the atmosphere. Climate change also acts upon the fluvial system, leading to greater discharge to the nearshore zone. It leads to decreasing sea-ice cover as well, which will both increase wave energy and lengthen the open-water season. Yet, knowledge on these processes and the resulting impact on the nearshore zone is scarce, because access ...
    Note: kumulative Dissertation , Dissertation Universität Potsdam 2022
    Additional Edition: Erscheint auch als Online-Ausgabe Klein, Konstantin Paul Remote sensing of suspended sediment dynamics in the Arctic nearshore zone Potsdam, 2022
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    kobvindex_GFZ20190514144848
    Format: vi, 126 Seiten , Illustrationen
    Content: Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.
    Note: Dissertation, Universität Potsdam, 2019 , Table of Contents Abstract Zusammenfassung Abbreviations 1 Introduction 1.1 Scientific Background and Motivation 1.1.1 Arctic Tundra Vegetation 1.1.2 Remote Sensing of Arctic Tundra Vegetation 1.1.3 Hyperspectral Remote Sensing of Arctic Vegetation 1.2 Aims and Objectives 1.3 Study Area and Data 1.3.1 Toolik Lake Research Natural Area 1.3.2 In-situ Canopy-level Spectral Data 1.3.3 True-colour Digital Photographs 1.3.4 Leaf-level Photosynthetic Pigment Data 1.3.5 Airborne AISA Imagery 1.3.6 Simulated EnMAP and Sentinel-2 Reflectance Spectra 1.3.7 Simulated EnMAP Imagery 1.4 Thesis Structure and Author Contributions 1.4.1 Chapter 2 -A Phenological Approach to Spectral Differentiation of Low-Arctic Tundra Vegetation Communities, North Slope Alaska 1.4.2 Chapter 3 -Monitoring Pigment-driven Vegetation Changes in a Low Arctic Tundra Ecosystem Using Digital Cameras 1.4.3 Implications of Litter and Non-vascular Components on Multiscale Hyperspectral Data in a low-Arctic Ecosystem 2 A Phenological Approach to Spectral Differentiation of Low Arctic Tundra Vegetation Communities, North Slope Alaska 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Site and Low Arctic Vegetation Types 2.3.2 Ground-Based Data and Sampling Protocol 2.3.3 EnMAP and Sentinel-2 Surface Reflectance Simulation 2.3.4 Stable Wavelength Identification Using the InStability Index 2.4 Results 2.4.1 Spectral Characteristics by Phenological Phase 2.4.2 InStability Index and Wavelength Selection of Ground-based Spectra 2.4.3 InStability Index and Wavelength Selection of Simulated Satellite Reflectance Spectra 2.5 Discussion 2.5.1 Phenological Phase and Wavelength Stability of Ground-based Spectra 2.5.2 Phenological Phase and Wavelength Stability of Satellite Resampled Spectra 2.5.3 Influence of Spatial Scale 2.6 Conclusions 2.7 Acknowledgements 2.8 Supplementary Material 2.8.1 Data Publication 3 Monitoring Pigment-driven Vegetation Changes in a Low Arctic Tundra Ecosystem Using Digital Cameras 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study Site 3.3.2 Digital Photographs 3.3.3 Field-based Spectral Data 3.3.4 Vegetation Pigment Concentration 3.3.5 Data Analyses 3.4 Results 3.4.1 RGB Indices as a Surrogate for Pigment-driven Spectral Indices 3.4.2 RGB Indices as a Surrogate for Leaf-level Pigment concentration 3.5 Discussion 3.6 Conclusions 3.7 Supplementary Material 3.7.1 Data Publication 4 Implications of Litter and Non-vascular Components on Multiscale Hyperspectral Data in a Low Arctic Ecosystem 4.1 Abstract 4.2 Introduction 4.3 Materials and Methods 4.3.1 Study Site 4.4 Remote Sensing Data 4.4.1 Ground-based Image Spectroscopy Data 4.4.2 Airborne AISA Hyperspectral Data 4.4.3 EnMAP Simulation 4.4.4 Spectral Comparison by Wavelength 4.4.5 Linear Mixture Analysis 4.5 Results 4.5.1 Spatial Scaling of Spectral Signals 4.6 Discussion 4.7 Conclusions 4.8 Acknowledgements 5 Synthesis and Discussion 5.1 Phenological Phase: does phenology influence the spectral variability of dominant low Arctic vegetation communities? 5.2 Vegetation Colour: How does canopy-level vegetation colour relate to phenological changes in leaf-level photosynthetic pigment concentration? 5.3 Intrinsic Ecosystem Components: How does spatial aggregation of high spectral resolution data influence low Arctic tundra vegetation signals? 5.4 Key Innovations 5.5 Limitations and Technical Considerations 5.6 Outlook: Opportunities for Future Research 6 References Acknowledgements
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    gbv_1663524998
    Format: vi, 126 Seiten , Illustrationen, Diagramme
    Content: Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in ...
    Note: Dissertation Universität Potsdam 2019
    Additional Edition: Erscheint auch als Online-Ausgabe Beamish, Alison Leslie Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation Potsdam, 2018
    Language: English
    Keywords: Arktische Zone ; Fernerkundung ; Multispektraltechnik ; Vegetationsaufnahme ; Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    gbv_511760264
    Note: Potsdam, Univ., Diss., 2006
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    gbv_511944780
    Format: viii, 98, XVII Bl , Ill., graph. Darst
    Note: Potsdam, Univ., Diss., 2006
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    kobvindex_IGB000022659
    In: Water. - 9(2017)1, 15
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    kobvindex_IGB000019409
    In: Global and planetary change. - 46(2005)1-4, S. 29-44
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    b3kat_BV026467513
    Format: III, 52 S. , graph. Darst., Kt. , 7 Beil.
    Note: Berlin, Freie Univ., Diplomkartierung, 2001
    Language: German
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edochu_18452_25817
    Format: 1 Online-Ressource (18 Seiten)
    Content: The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The ‘regular year’ snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 °C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic.
    Content: Peer Reviewed
    In: Bristol : IOP Publ., 17,8
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    edochu_18452_21223
    Format: 1 Online-Ressource (27 Seiten)
    Content: In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.
    Content: Peer Reviewed
    In: Basel : MDPI, 10,4
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages