Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    gbv_1022185683
    Format: 1 Online-Ressource (circa 29 Seiten) , Illustrationen
    Series Statement: Policy research working paper 8374
    Content: Crop yields in smallholder systems are traditionally assessed using farmer-reported information in surveys, occasionally by crop cuts for a sub-section of a farmer's plot, and rarely using full-plot harvests. Accuracy and cost vary dramatically across methods. In parallel, satellite data is improving in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study uses data from a survey experiment in Uganda, and evaluates the accuracy of Sentinel-2 imagery-based, remotely-sensed plot-level maize yields with respect to ground-based measures relying on farmer self-reporting, sub-plot crop cutting (CC), and full-plot crop cutting (FP). Remotely-sensed yields include two versions calibrated to FP and CC yields (calibrated), and an alternative based on crop model simulations, using no ground data (uncalibrated). On the ground, self-reported yields explained less than 1 percent of FP (and CC) yield variability, and while the average difference between CC and FP yields was not significant, CC yields captured one-quarter of FP yield variability. With satellite data, both calibrated and uncalibrated yields captured FP yield variability on pure stand plots similarly well, and both captured half of FP yield variability on pure stand plots above 0.10 hectare. The uncalibrated yields were consistently 1 ton per hectare higher than FP or CC yields, and the satellite-based yields were less well correlated with the ground-based measures on intercropped plots compared with pure stand ones. Importantly, regressions using CC, FP and remotely-sensed yields as dependent variables all produced very similar coefficients for yield response to production factors
    Additional Edition: Erscheint auch als Druck-Ausgabe Lobell, David B Eyes in the Sky, Boots on the Ground: Assessing Satellite- and Ground-Based Approaches to Crop Yield Measurement and Analysis in Uganda Washington, D.C : The World Bank, 2018
    Language: English
    Keywords: Graue Literatur
    URL: Volltext  (Deutschlandweit zugänglich)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV048273883
    Format: 1 Online-Ressource (29 Seiten)
    Series Statement: World Bank E-Library Archive
    Content: Crop yields in smallholder systems are traditionally assessed using farmer-reported information in surveys, occasionally by crop cuts for a sub-section of a farmer's plot, and rarely using full-plot harvests. Accuracy and cost vary dramatically across methods. In parallel, satellite data is improving in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study uses data from a survey experiment in Uganda, and evaluates the accuracy of Sentinel-2 imagery-based, remotely-sensed plot-level maize yields with respect to ground-based measures relying on farmer self-reporting, sub-plot crop cutting (CC), and full-plot crop cutting (FP). Remotely-sensed yields include two versions calibrated to FP and CC yields (calibrated), and an alternative based on crop model simulations, using no ground data (uncalibrated). On the ground, self-reported yields explained less than 1 percent of FP (and CC) yield variability, and while the average difference between CC and FP yields was not significant, CC yields captured one-quarter of FP yield variability. With satellite data, both calibrated and uncalibrated yields captured FP yield variability on pure stand plots similarly well, and both captured half of FP yield variability on pure stand plots above 0.10 hectare. The uncalibrated yields were consistently 1 ton per hectare higher than FP or CC yields, and the satellite-based yields were less well correlated with the ground-based measures on intercropped plots compared with pure stand ones. Importantly, regressions using CC, FP and remotely-sensed yields as dependent variables all produced very similar coefficients for yield response to production factors
    Additional Edition: Erscheint auch als Druck-Ausgabe Lobell, David B Eyes in the Sky, Boots on the Ground: Assessing Satellite- and Ground-Based Approaches to Crop Yield Measurement and Analysis in Uganda Washington, D.C : The World Bank, 2018
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    gbv_1759635243
    Format: 1 Online-Ressource
    Series Statement: Policy Research Working Paper No. 8374
    Content: Crop yields in smallholder systems are traditionally assessed using farmer-reported information in surveys, occasionally by crop cuts for a sub-section of a farmer's plot, and rarely using full-plot harvests. Accuracy and cost vary dramatically across methods. In parallel, satellite data is improving in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study uses data from a survey experiment in Uganda, and evaluates the accuracy of Sentinel-2 imagery-based, remotely-sensed plot-level maize yields with respect to ground-based measures relying on farmer self-reporting, sub-plot crop cutting (CC), and full-plot crop cutting (FP). Remotely-sensed yields include two versions calibrated to FP and CC yields (calibrated), and an alternative based on crop model simulations, using no ground data (uncalibrated). On the ground, self-reported yields explained less than 1 percent of FP (and CC) yield variability, and while the average difference between CC and FP yields was not significant, CC yields captured one-quarter of FP yield variability. With satellite data, both calibrated and uncalibrated yields captured FP yield variability on pure stand plots similarly well, and both captured half of FP yield variability on pure stand plots above 0.10 hectare. The uncalibrated yields were consistently 1 ton per hectare higher than FP or CC yields, and the satellite-based yields were less well correlated with the ground-based measures on intercropped plots compared with pure stand ones. Importantly, regressions using CC, FP and remotely-sensed yields as dependent variables all produced very similar coefficients for yield response to production factors
    Note: Africa , Uganda , English
    Language: Undetermined
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages