Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Medical Microbiology and Immunology, 2007, Vol.196(4), pp.213-225
    Description: Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. This fourth part focuses on vaccine development. Several phase I clinical studies with vaccines against H5 viruses have demonstrated limited efficacy compared to seasonal influenza vaccines. To induce protective immunity two immunisations with increased amounts of H5N1 vaccine were required. Novel vaccination strategies that are egg- and adjuvant-independent, broadly cross-reactive and long-lasting are highly desirable.
    Keywords: Vaccines ; Avian Influenza;
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, Sept 30, 2014, Vol.9(9)
    Description: Aurora kinase inhibitors displayed activity in pre-clinical neuroblastoma models. Here, we studied the effects of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) and the aurora kinase inhibitor alisertib (MLN8237) that shows some specificity for aurora kinase A over aurora kinase B in a panel of neuroblastoma cell lines with acquired drug resistance. Both compounds displayed anti-neuroblastoma activity in the nanomolar range. The anti-neuroblastoma mechanism included inhibition of aurora kinase signalling as indicated by decreased phosphorylation of the aurora kinase substrate histone H3, cell cycle inhibition in G2/M phase, and induction of apoptosis. The activity of alisertib but not of tozasertib was affected by ABCB1 expression. Aurora kinase inhibitors induced a p53 response and their activity was enhanced in combination with the MDM2 inhibitor and p53 activator nutlin-3 in p53 wild-type cells. In conclusion, aurora kinases are potential drug targets in therapy-refractory neuroblastoma, in particular for the vast majority of p53 wild-type cases.
    Keywords: Tumor Proteins ; Apoptosis ; Phosphotransferases ; Neuroblastoma
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, Sept 30, 2014, Vol.9(9)
    Description: Aurora kinase inhibitors displayed activity in pre-clinical neuroblastoma models. Here, we studied the effects of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) and the aurora kinase inhibitor alisertib (MLN8237) that shows some specificity for aurora kinase A over aurora kinase B in a panel of neuroblastoma cell lines with acquired drug resistance. Both compounds displayed anti-neuroblastoma activity in the nanomolar range. The anti-neuroblastoma mechanism included inhibition of aurora kinase signalling as indicated by decreased phosphorylation of the aurora kinase substrate histone H3, cell cycle inhibition in G2/M phase, and induction of apoptosis. The activity of alisertib but not of tozasertib was affected by ABCB1 expression. Aurora kinase inhibitors induced a p53 response and their activity was enhanced in combination with the MDM2 inhibitor and p53 activator nutlin-3 in p53 wild-type cells. In conclusion, aurora kinases are potential drug targets in therapy-refractory neuroblastoma, in particular for the vast majority of p53 wild-type cases.
    Keywords: Tumor Proteins ; Apoptosis ; Phosphotransferases ; Neuroblastoma
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, May 17, 2011, Vol.6(5), p.e19705
    Description: Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 [micro]g/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 [micro]g/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NF[kappa]B, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
    Keywords: Antiviral Agents -- Health Aspects ; Virus Replication -- Health Aspects ; Avian Influenza Viruses -- Health Aspects ; Avian Influenza -- Health Aspects ; Genes -- Health Aspects ; Apoptosis -- Health Aspects ; Gene Expression -- Health Aspects
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: BMC Research Notes, 2014, Vol.7, p.384-384
    Description: Background Different flavonoids are known to interfere with influenza A virus replication. Recently, we showed that the structurally similar flavonoids baicalein and biochanin A inhibit highly pathogenic avian H5N1 influenza A virus replication by different mechanisms in A549 lung cells. Here, we investigated the effects of both compounds on H5N1-induced reactive oxygen species (ROS) formation and the role of ROS formation during H5N1 replication. Findings Baicalein and biochanin A enhanced H5N1-induced ROS formation in A549 cells and primary human monocyte-derived macrophages. Suppression of ROS formation induced by baicalein and biochanin A using the antioxidant N-acetyl-L-cysteine strongly increased the anti-H5N1 activity of both compounds in A549 cells but not in macrophages. Conclusions These findings emphasise that flavonoids induce complex pharmacological actions some of which may interfere with H5N1 replication while others may support H5N1 replication. A more detailed understanding of these actions and the underlying structure-activity relationships is needed to design agents with optimised anti-H5N1 activity.
    Keywords: Short Report ; H5n1 ; Biochanin A ; Baicalein ; Antiviral ; Reactive Oxygen Species ; N-Acetyl-L-Cysteine
    E-ISSN: 1756-0500
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Medicine, 2016
    Description: The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells1. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking2, 3. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate4, 5. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs6, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity--through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles7, 8--potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.
    Keywords: Leukemia ; Chemotherapy ; Biomarkers ; Medical Prognosis ; Cytotoxicity;
    ISSN: 1078-8956
    E-ISSN: 1546-170X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Medicine, 2017, Vol.23(6), p.788
    Description: Corrigendum: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
    Keywords: Medicine ; Biology;
    ISSN: 1078-8956
    E-ISSN: 1546-170X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Scientific Reports, 2015, Vol.5
    Description: Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.
    Keywords: Biology;
    ISSN: 20452322
    E-ISSN: 20452322
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Translational Oncology, 01 June 2015, Vol.8(3), pp.210-216
    Description: Combination chemotherapy with gemcitabine and cisplatin in patients with metastatic urothelial cancer of the bladder frequently results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance could help to identify candidate treatments for an efficient second-line therapy. Six cisplatin- and six gemcitabine-resistant cell lines were established. Cell viability assays were performed to evaluate the sensitivity to 16 different chemotherapeutic substances. The activity of the drug transporter ATP-binding cassette transporter, subfamily B, member 1 (ABCB1, a critical mediator of multidrug resistance in cancer) was evaluated using fluorescent ABCB1 substrates. For functional assessment, cells overexpressing ABCB1 were generated by transduction with a lentiviral vector encoding for ABCB1, while zosuquidar was used for selective inhibition. In this study, 8 of 12 gemcitabine- or cisplatin-resistant cell lines were cross-resistant to carboplatin, 5 to pemetrexed, 4 to methotrexate, 3 to oxaliplatin, 5-fluorouracil, and paclitaxel, and 2 to cabazitaxel, larotaxel, docetaxel, topotecan, doxorubicin, and mitomycin c, and 1 of 12 cell lines was cross-resistant to vinflunine and vinblastine. In one cell line with acquired resistance to gemcitabine (TCC-SUPrGEMCI20), cross-resistance seemed to be mediated by ABCB1 expression. Our model identified the vinca alkaloids vinblastine and vinflunine, in Europe an already approved second-line therapeutic for metastatic bladder cancer, as the most effective compounds in urothelial cancer cells with acquired resistance to gemcitabine or cisplatin. These results demonstrate that this in vitro model can reproduce clinically relevant results and may be suitable to identify novel substances for the treatment of metastatic bladder cancer.
    Keywords: Medicine
    ISSN: 1936-5233
    E-ISSN: 1936-5233
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Neoplasia: An International Journal for Oncology Research, 01 December 2010, Vol.12(12), pp.1023-1030
    Description: The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors.
    Keywords: Medicine
    ISSN: 1476-5586
    E-ISSN: 1476-5586
    Source: Directory of Open Access Journals (DOAJ)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages