Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 16 August 2011, Vol.108(33), pp.13688-93
    Description: Human CD317 is an intrinsic immunity factor that restricts the release of enveloped viruses, including the major pathogens HIV and Lassa virus, from infected cells in culture. Its importance for infection control in humans is unclear, due in part to its incompletely defined in vivo expression pattern. CD317 also has been proposed as a selective target for immunotherapy of multiple myeloma. To provide a framework for studies of the biological functions, regulation, and therapeutic potential of CD317, we performed microarray-based expression profiling in 468 tissue samples from 25 healthy organs from more than 210 patients. We found that CD317 protein was expressed to varying degrees in all organs tested and detected in a number of specialized cell types, including hepatocytes, pneumocytes, ducts of major salivary glands, pancreas and kidney, Paneth cells, epithelia, Leydig cells, plasma cells, bone marrow stromal cells, monocytes, and vascular endothelium. Although many of these cell types are in vivo targets for pathogenic viruses, restriction by CD317 or virus-encoded antagonists has been documented in only some of them. Limited cell type-dependent coexpression of CD317 with the IFN biomarker MxA in vivo and lack of responsive stimulation in organ explants suggest that interferons may only partially regulate CD317. This in vivo expression profiling sheds light on the biology and species-specificity of CD317, identifies multiple thus far unknown interaction sites of viruses with this restriction factor, and refutes the concept of its restricted constitutive expression and primary IFN inducibility. CD317's widespread expression calls into question its suitability as a target for immunotherapy.
    Keywords: Antigens, CD -- Analysis
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The Journal of Virology, 2010, Vol. 84(23), p.12300
    Description: An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.
    Keywords: Genomes ; Macrophages ; Virions ; DNA Biosynthesis ; Tat Protein ; Replication ; Deamination ; Animal Models ; Drug Development ; Ccr5 Protein ; Cyclin T1 ; Infection ; Gag Protein ; Infectivity ; Cd4 Antigen ; Lymphocytes T ; Vaccines ; Mutation ; Drugs ; Lentivirus ; Human Immunodeficiency Virus 1 ; AIDS and HIV ; Microorganisms & Parasites;
    ISSN: 0022-538X
    ISSN: 0022538X
    E-ISSN: 10985514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Virology, 2011, Vol. 85(15), p.7922
    ISSN: 0022-538X
    ISSN: 0022538X
    Source: American Society of Microbiology
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Analytical and Bioanalytical Chemistry, 2015, Vol.407(13), pp.3693-3704
    Description: Nucleosides and nucleoside triphosphates are the building blocks of nucleic acids and important bioactive metabolites, existing in all living cells. In the present study, two liquid chromatography tandem mass spectrometry methods were developed to quantify both groups of compounds from the same sample with a shared extraction procedure. After a simple protein precipitation with methanol, the nucleosides were separated with reversed phase chromatography on an Atlantis T3 column while for the separation of the nucleoside triphosphates, an anion exchange column (BioBasic AX) was used. No addition of ion pair reagent was required. A 5500 QTrap was used as analyzer, operating as triple quadrupole. The analytical method for the nucleoside triphosphates has been validated according to the guidelines of the US Food and Drug Administration. The lower limit of quantification values were determined as 10 pg on column (0.5 ng/mL in the injection solution) for deoxyadenosine triphosphate and deoxyguanosine triphosphate, 20 pg (1 ng/mL) for deoxycytidine triphosphate and thymidine triphosphate, 100 pg (5 ng/mL) for cytidine triphosphate and guanosine triphosphate, and 500 pg (25 ng/mL) for adenosine triphosphate und uridine triphosphate respectively. This methodology has been applied to the quantitation of nucleosides and nucleoside triphosphates in primary human CD4 T lymphocytes and macrophages. As expected, the concentrations for ribonucleosides and ribonucleoside triphophates were considerably higher than those obtained for the deoxy derivatives. Upon T cell receptor activation, the levels of all analytes, with the notable exceptions of deoxyadenosine triphosphate and deoxyguanosine triphosphate, were found to be elevated in CD4 T cells.
    Keywords: Nucleosides ; NTP ; LC-MS/MS ; Macrophages ; T lymphocytes
    ISSN: 1618-2642
    E-ISSN: 1618-2650
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 23 October 2018, Vol.115(43), pp.E10022-E10031
    Description: SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that depletes cellular dNTPs in noncycling cells to promote genome stability and to inhibit retroviral and herpes viral replication. In addition to being substrates, cellular nucleotides also allosterically regulate SAMHD1 activity. Recently, it was shown that high expression levels of SAMHD1 are also correlated with significantly worse patient responses to nucleotide analog drugs important for treating a variety of cancers, including acute myeloid leukemia (AML). In this study, we used biochemical, structural, and cellular methods to examine the interactions of various cancer drugs with SAMHD1. We found that both the catalytic and the allosteric sites of SAMHD1 are sensitive to sugar modifications of the nucleotide analogs, with the allosteric site being significantly more restrictive. We crystallized cladribine-TP, clofarabine-TP, fludarabine-TP, vidarabine-TP, cytarabine-TP, and gemcitabine-TP in the catalytic pocket of SAMHD1. We found that all of these drugs are substrates of SAMHD1 and that the efficacy of most of these drugs is affected by SAMHD1 activity. Of the nucleotide analogs tested, only cladribine-TP with a deoxyribose sugar efficiently induced the catalytically active SAMHD1 tetramer. Together, these results establish a detailed framework for understanding the substrate specificity and allosteric activation of SAMHD1 with regard to nucleotide analogs, which can be used to improve current cancer and antiviral therapies.
    Keywords: Samhd1 ; Allosteric Regulation ; Dntpase ; Nucleotide Analog Drugs ; Substrate Selection ; Allosteric Site -- Drug Effects ; Catalytic Domain -- Drug Effects ; Drug Interactions -- Physiology ; Leukemia, Myeloid, Acute -- Metabolism ; SAM Domain and HD Domain-Containing Protein 1 -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 16 January 2007, Vol.104(3), pp.1015-20
    Description: The current testing of anti-HIV drugs is hampered by the lack of a small animal that is readily available and easy to handle; can be infected systemically with HIV type 1 (HIV-1); harbors the major HIV-1 target cells in a physiological frequency, organ distribution, and activation state; and is established as a pharmacological model. Here, we explored the potential of outbred Sprague-Dawley rats that transgenically express the HIV-1 receptor complex on CD4 T cells and macrophages as a model for the preclinical evaluation of inhibitors targeting virus entry or reverse transcription. The concentrations of the peptidic fusion inhibitor enfuvirtide or the nonnucleoside reverse transcriptase inhibitor efavirenz required to inhibit HIV-1 infection of cultured primary CD4 T cells and macrophages from human CD4 and CCR5-transgenic rats differed by no more than 3-fold from those required for human reference cultures. Prophylactic treatment of double-transgenic rats with a weight-adapted pediatric dosing regimen for either enfuvirtide (s.c., twice-daily) or efavirenz (oral, once-daily) achieved a 92.5% or 98.8% reduction, respectively, of the HIV-1 cDNA load in the spleen 4 days after i.v. HIV-1 challenge. Notably, a once-daily dosing regimen for enfuvirtide resulted in a approximately 5-fold weaker inhibition of infection, unmasking the unfavorable pharmacokinetic characteristics of the synthetic peptide in the context of an efficacy trial. This work provides proof of principle that HIV-susceptible transgenic rats can allow a rapid and predictive preclinical evaluation of the inhibitory potency and of the pharmacokinetic properties of antiviral compounds targeting early steps in the HIV replication cycle.
    Keywords: Anti-HIV Agents -- Therapeutic Use ; HIV Infections -- Drug Therapy ; HIV-1 -- Drug Effects ; Reverse Transcription -- Genetics ; Virus Internalization -- Drug Effects
    ISSN: 0027-8424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: The Journal of Virology, 2010, Vol. 84(21), p.11374
    Description: Human CD317 (BST-2/tetherin) is an intrinsic immunity factor that blocks the release of retroviruses, filoviruses, herpesviruses, and arenaviruses. It is unclear whether CD317 expressed endogenously in rodent cells has the capacity to interfere with the replication of the retroviral rodent pathogen murine leukemia virus (MLV) or, in the context of small-animal model development, contributes to the well-established late-phase restriction of human immunodeficiency virus type 1 (HIV-1). Here, we show that small interfering RNA (siRNA)-mediated knockdown of CD317 relieved a virion release restriction and markedly enhanced the egress of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) in rat cells, including primary macrophages. Moreover, rodent CD317 potently inhibited MLV release, and siRNA-mediated depletion of CD317 in a mouse T-cell line resulted in the accelerated spread of MLV. Several virus-encoded antagonists have recently been reported to overcome the restriction imposed by human or monkey CD317, including HIV-1 Vpu, envelope glycoproteins of HIV-2 and Ebola virus, Kaposi's sarcoma-associated herpesvirus K5, and SIV Nef. In contrast, both rat and mouse CD317 showed a high degree of resistance to these viral antagonists. These data suggest that CD317 is a broadly acting and conserved mediator of innate control of retroviral infection and pathogenesis that restricts the release of retroviruses and lentiviruses in rodents. The high degree of resistance of the rodent CD317 restriction factors to antagonists from primate viruses has implications for HIV-1 small-animal model development and may guide the design of novel antiviral interventions.
    Keywords: Biology;
    ISSN: 0022-538X
    ISSN: 0022538X
    E-ISSN: 10985514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: The Journal of biological chemistry, 06 November 2015, Vol.290(45), pp.27345-59
    Description: Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.
    Keywords: Glycobiology ; Glycoconjugate ; Infectious Disease ; Molecular Modeling ; Retrovirus ; Sialic Acid ; Moloney Murine Leukemia Virus -- Pathogenicity ; Sialic Acid Binding Ig-Like Lectin 1 -- Chemistry
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 07 March 2017, Vol.114(10), pp.2729-2734
    Description: Early after entry into monocytes, macrophages, dendritic cells, and resting CD4 T cells, HIV encounters a block, limiting reverse transcription (RT) of the incoming viral RNA genome. In this context, dNTP triphosphohydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) has been identified as a restriction factor, lowering the concentration of dNTP substrates to limit RT. The accessory lentiviral protein X (Vpx) proteins from the major simian immunodeficiency virus of rhesus macaque, sooty mangabey, and HIV-2 (SIVsmm/SIVmac/HIV-2) lineage packaged into virions target SAMHD1 for proteasomal degradation, increase intracellular dNTP pools, and facilitate HIV cDNA synthesis. We find that virion-packaged Vpx proteins from a second SIV lineage, SIV of red-capped mangabeys or mandrills (SIVrcm/mnd-2), increased HIV infection in resting CD4 T cells, but not in macrophages, and, unexpectedly, acted in the absence of SAMHD1 degradation, dNTP pool elevation, or changes in SAMHD1 phosphorylation. Vpx rcm/mnd-2 virion incorporation resulted in a dramatic increase of HIV-1 RT intermediates and viral cDNA in infected resting CD4 T cells. These analyses also revealed a barrier limiting HIV-1 infection of resting CD4 T cells at the level of nuclear import. Single amino acid changes in the SAMHD1-degrading Vpx mac239 allowed it to enhance early postentry steps in a Vpx rcm/mnd-2-like fashion. Moreover, Vpx enhanced HIV-1 infection of SAMHD1-deficient resting CD4 T cells of a patient with Aicardi-Goutières syndrome. These results indicate that Vpx, in addition to SAMHD1, overcomes a previously unappreciated restriction for lentiviruses at the level of RT that acts independently of dNTP concentrations and is specific to resting CD4 T cells.
    Keywords: HIV ; Samhd1 ; Vpx ; Resting Cd4 T Cells ; Restriction Factors ; HIV Infections -- Genetics ; Reverse Transcription -- Genetics ; SAM Domain and HD Domain-Containing Protein 1 -- Genetics ; Viral Regulatory and Accessory Proteins -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: The Lancet, 11 April 2015, Vol.385(9976), pp.1428-1435
    Description: In the current epidemic of Ebola virus disease in western Africa, many aid workers have become infected. Some of these aid workers have been transferred to specialised hospitals in Europe and the USA for intensified treatment, providing the potential for unique insight into the clinical course of Ebola virus disease under optimised supportive measures in isolation units. A 38-year-old male doctor who had contracted an Ebola virus infection in Sierra Leone was airlifted to University Hospital Frankfurt, Germany, on day 5 after disease onset. Within 72 h of admission to the hospital's high-level isolation unit, the patient developed signs of severe multiorgan failure, including lungs, kidneys, and gastrointestinal tract. In addition to clinical parameters, the diagnostic work-up included radiography, ultrasound, pulse contour cardiac output technology, and microbiological and clinical chemistry analyses. Respiratory failure with pulmonary oedema and biophysical evidence of vascular leak syndrome needed mechanical ventilation. The patient received a 3 day treatment course with FX06 (MChE-F4Pharma, Vienna, Austria), a fibrin-derived peptide under clinical development for vascular leak syndrome. After FX06 administration and concurrent detection of Ebola-virus-specific antibodies and a fall in viral load, vascular leak syndrome and respiratory parameters substantially improved. We gave broad-spectrum empiric antimicrobial therapy and the patient needed intermittent renal replacement therapy. The patient fully recovered. This case report shows the feasibility of delivery of successful intensive care therapy to patients with Ebola virus disease under biosafety level 4 conditions. The effective treatment of vascular leakage and multiorgan failure by combination of ventilatory support, antibiotic treatment, and renal replacement therapy can sustain a patient with severe Ebola virus disease until virological remission. FX06 could potentially be a valuable agent in contribution to supportive therapy. University Hospital of Frankfurt.
    Keywords: Medicine
    ISSN: 0140-6736
    E-ISSN: 1474-547X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages