Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Journal of medicinal chemistry, 24 February 2005, Vol.48(4), pp.1256-9
    Description: Glycyrrhizin (GL) was shown to inhibit SARS-coronavirus (SARS-CoV) replication in vitro. Here the anti-SARS-CoV activity of 15 GL derivatives was tested. The introduction of 2-acetamido-beta-d-glucopyranosylamine into the glycoside chain of GL resulted in 10-fold increased anti-SARS-CoV activity compared to GL. Amides of GL and conjugates of GL with two amino acid residues and a free 30-COOH function presented up to 70-fold increased activity against SARS-CoV but also increased cytotoxicity resulting in decreased selectivity index.
    Keywords: Antiviral Agents -- Chemical Synthesis ; Glycyrrhizic Acid -- Analogs & Derivatives ; Sars Virus -- Drug Effects
    ISSN: 0022-2623
    E-ISSN: 15204804
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Natural product research, 10 September 2019, pp.1-9
    Description: Paeoniflorin per-O-benzoates with the preserved pinane structure and rearranged aglycone , containing C4 = O function, were obtained and their influence on learning and memory of aged rats was studied in the passive avoidance task. It was found that the chemical modification of paeoniflorin affected the cognitive functions of aged rats. The introduction of C4 = O function into the pinane part of benzoate led to the improvement in learning process and preservation of the memory trace in aged rats as compared to the natural glycoside. This compound can be considered as the promising for further studies on models of disorders characteristic for Alzheimer's disease.
    Keywords: Paeoniflorin ; Benzoates ; Passive Avoidance Task ; Rats
    E-ISSN: 1478-6427
    Source: MEDLINE/PubMed (U.S. National Library of Medicine)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Antiviral Research, 2008, Vol.79(1), pp.6-11
    Description: Glycyrrhizic acid (18β-GL or GL) is a herbal drug with a broad spectrum of antiviral activities and pharmacological effects and multiple sites of action. Previously we showed that GL inhibits Epstein-Barr virus (EBV) infection by interfering with an early step of the EBV replication cycle (possibly attachment/penetration). Here we tested the effects of 15 GL derivatives against EBV infection by scoring the numbers of cell expressing viral antigens and quantifying EBV DNA copy numbers in superinfected Raji cells. The derivatives were made either by transformation of GL on carboxyl and hydroxyl groups or by conjugation of amino acid residues into the carbohydrate part. We identified seven compounds active against EBV and all showed dose-dependent inhibition as determined by both assays. Among these active compounds, the introduction of amino acid residues into the GL carbohydrate part enhanced the antiviral activity in three of the seven active compounds. However, when Glu(OH)-OMe was substituted by Glu(OMe)-OMe, its antiviral activity was completely abolished. Introduction of potassium or ammonium salt to GL reduced the antiviral activity with no significant effect on cytotoxicity. The α-isomer (18α-GL) of 18β-GL was as potent as the β-form, but its sodium salt lost antiviral activity. The metabolic product of GL, 18β-glycyrrhetinic acid (18β-GA or GA), was 7.5-fold more active against EBV than its parental compound GL but, concomitantly, exhibited increased cytotoxicity resulting in a decreased therapeutic index.
    Keywords: Glycyrrhizic Acid Derivatives ; Epstein-Barr Virus ; Antiviral Activity ; Medicine ; Biology
    ISSN: 0166-3542
    E-ISSN: 1872-9096
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages