Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science (New York, N.Y.), 17 August 2012, Vol.337(6096), pp.816-21
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
    Keywords: DNA Breaks, Double-Stranded ; DNA Cleavage ; Inverted Repeat Sequences ; Bacteriophages -- Immunology ; Deoxyribonucleases, Type II Site-Specific -- Metabolism ; RNA -- Metabolism ; Streptococcus Pyogenes -- Enzymology
    ISSN: 00368075
    E-ISSN: 1095-9203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2011, Vol.471(7340), p.602
    Description: CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders. [PUBLICATION ]
    Keywords: Bacterial Proteins–Chemistry ; Bacterial Proteins–Genetics ; Bacterial Proteins–Immunology ; Bacterial Proteins–Metabolism ; Conserved Sequence–Genetics ; DNA, Viral–Metabolism ; DNA, Viral–Genetics ; Escherichia Coli–Genetics ; Models, Biological–Metabolism ; Prophages–Biosynthesis ; RNA Precursors–Genetics ; RNA Precursors–Immunology ; RNA Processing, Post-Transcriptional–Metabolism ; RNA, Bacterial–Genetics ; RNA, Bacterial–Metabolism ; RNA, Bacterial–Genetics ; RNA, Bacterial–Immunology ; RNA, Guide–Metabolism ; Ribonuclease III–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; E Coli ; Bacteria ; Bacteriology ; Plasmids ; Proteins ; Bacterial Proteins ; DNA, Viral ; RNA Precursors ; RNA, Bacterial ; RNA, Guide ; Ribonuclease III;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science, 17 August 2012, Vol.337(6096), pp.816-821
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
    Keywords: Physical sciences -- Chemistry -- Chemical compounds ; Biological sciences -- Biology -- Genetics ; Physical sciences -- Chemistry -- Chemical compounds ; Biological sciences -- Biology -- Genetics ; Biological sciences -- Biochemistry -- Biomolecules ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Chemistry -- Chemical compounds ; Biological sciences -- Biology -- Genetics ; Physical sciences -- Physics -- Microphysics ; Applied sciences -- Computer science -- Computer programming
    ISSN: 00368075
    E-ISSN: 10959203
    Source: Archival Journals (JSTOR)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Nucleic acids research, June 2014, Vol.42(10), pp.6091-105
    Description: The CRISPR-Cas systems of archaeal and bacterial adaptive immunity are classified into three types that differ by the repertoires of CRISPR-associated (cas) genes, the organization of cas operons and the structure of repeats in the CRISPR arrays. The simplest among the CRISPR-Cas systems is type II in which the endonuclease activities required for the interference with foreign deoxyribonucleic acid (DNA) are concentrated in a single multidomain protein, Cas9, and are guided by a co-processed dual-tracrRNA:crRNA molecule. This compact enzymatic machinery and readily programmable site-specific DNA targeting make type II systems top candidates for a new generation of powerful tools for genomic engineering. Here we report an updated census of CRISPR-Cas systems in bacterial and archaeal genomes. Type II systems are the rarest, missing in archaea, and represented in ∼ 5% of bacterial genomes, with an over-representation among pathogens and commensals. Phylogenomic analysis suggests that at least three cas genes, cas1, cas2 and cas4, and the CRISPR repeats of the type II-B system were acquired via recombination with a type I CRISPR-Cas locus. Distant homologs of Cas9 were identified among proteins encoded by diverse transposons, suggesting that type II CRISPR-Cas evolved via recombination of mobile nuclease genes with type I loci.
    Keywords: Crispr-Cas Systems ; Evolution, Molecular ; Crispr-Associated Proteins -- Classification
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Nucleic Acids Research, 2014, Vol. 42(4), pp. 2577-2590
    Description: The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA: crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA: Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.
    Keywords: Natural Sciences ; Biological Sciences ; Biochemistry And Molecular Biology ; Naturvetenskap ; Biologiska Vetenskaper ; Biokemi Och Molekylärbiologi
    ISSN: 0305-1048
    E-ISSN: 13624962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: RNA Biology, 01 May 2013, Vol.10(5), p.726-737
    Description: CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase III, dual-tracrRNA:crRNA guides the CRISPR-associated endonuclease Cas9 (Csn1) to cleave site-specifically cognate target DNA. Here, we screened available genomes for type II CRISPR-Cas loci by searching for Cas9 orthologs. We analyzed 75 representative loci, and for 56 of them we predicted novel tracrRNA orthologs. Our analysis demonstrates a high diversity in cas operon architecture and position of the tracrRNA gene within CRISPR-Cas loci. We observed a correlation between locus heterogeneity and Cas9 sequence diversity, resulting in the identification of various type II CRISPR-Cas subgroups. We validated the expression and co-processing of predicted tracrRNAs and pre-crRNAs by RNA sequencing in five bacterial species. This study reveals tracrRNA family as an atypical, small RNA family with no obvious conservation of structure, sequence or localization within type II CRISPR-Cas loci. The tracrRNA family is however characterized by the conserved feature to base-pair to cognate pre-crRNA repeats, an essential function for crRNA maturation and DNA silencing by dual-RNA:Cas9. The large panel of tracrRNA and Cas9 ortholog sequences should constitute a useful database to improve the design of RNA-programmable Cas9 as genome editing tool.
    Keywords: Research Article ; Tracrrna ; Crispr-Cas ; Type Ii System ; Cas9 (Csn1) ; Rna Processing ; Rna Maturation ; Small Non-Coding Rna ; Bacteria ; Adaptive Immunity ; Mobile Genetic Elements
    ISSN: 1547-6286
    E-ISSN: 1555-8584
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: RNA Biology, 2016, Vol. 13(2), pp. 177-195
    Description: Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.
    Keywords: Antisense Rnas ; Gene Expression Regulation ; Leader Rnas ; Rna Sequencing ; Riboswitches ; Streptococcus Pyogenes ; Small Rnas ; T-Boxes ; Natural Sciences ; Biological Sciences ; Biochemistry And Molecular Biology ; Naturvetenskap ; Biologiska Vetenskaper ; Biokemi Och Molekylärbiologi
    ISSN: 1547-6286
    E-ISSN: 15558584
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Chemical & Engineering Data, 01/2004, Vol.49(1), pp.2-6
    ISSN: 0021-9568
    E-ISSN: 1520-5134
    Source: American Chemical Society (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Journal of Chemical & Engineering Data, 01/2004, Vol.49(1), pp.18-23
    ISSN: 0021-9568
    E-ISSN: 1520-5134
    Source: American Chemical Society (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages