Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 21 April 2015, Vol.112(16), pp.5159-64
    Description: RpoS, the stationary phase/stress sigma factor of Escherichia coli, regulates a large cohort of genes important for the cell to deal with suboptimal conditions. Its level increases quickly in the cell in response to many stresses and returns to low levels when growth resumes. Increased RpoS results from increased translation and decreased RpoS degradation. Translation is positively regulated by small RNAs (sRNAs). Protein stability is positively regulated by anti-adaptors, which prevent the RssB adaptor-mediated degradation of RpoS by the ClpXP protease. Inactivation of aceE, a subunit of pyruvate dehydrogenase (PDH), was found to increase levels of RpoS by affecting both translation and protein degradation. The stabilization of RpoS in aceE mutants is dependent on increased transcription and translation of IraP and IraD, two known anti-adaptors. The aceE mutation also leads to a significant increase in rpoS translation. The sRNAs known to positively regulate RpoS are not responsible for the increased translation; sequences around the start codon are sufficient for the induction of translation. PDH synthesizes acetyl-CoA; acetate supplementation allows the cell to synthesize acetyl-CoA by an alternative, less favored pathway, in part dependent upon RpoS. Acetate addition suppressed the effects of the aceE mutant on induction of the anti-adaptors, RpoS stabilization, and rpoS translation. Thus, the bacterial cell responds to lowered levels of acetyl-CoA by inducing RpoS, allowing reprogramming of E. coli metabolism.
    Keywords: Clpxp ; Rpos ; Rssb ; Acetyl Coa ; Pyruvate Dehydrogenase ; Protein Biosynthesis ; Proteolysis ; Stress, Physiological ; Bacterial Proteins -- Metabolism ; Escherichia Coli -- Metabolism ; Sigma Factor -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 25 May 2010, Vol.107(21), pp.9602-7
    Description: Bacterial small noncoding RNAs carry out both positive and negative regulation of gene expression by pairing with mRNAs; in Escherichia coli, this regulation often requires the RNA chaperone Hfq. Three small regulatory RNAs (sRNAs), DsrA, RprA, and ArcZ, positively regulate translation of the sigma factor RpoS, each pairing with the 5' leader to open up an inhibitory hairpin. In vitro, rpoS interaction with sRNAs depends upon an (AAN)(4) Hfq-binding site upstream of the pairing region. Here we show that both Hfq and this Hfq binding site are required for RprA or ArcZ to act in vivo and to form a stable complex with rpoS mRNA in vitro; both were partially dispensable for DsrA at 37 degrees C. ArcZ sRNA is processed from 121 nt to a stable 56 nt species that contains the pairing region; only the 56 nt ArcZ makes a strong Hfq-dependent complex with rpoS. For each of these sRNAs, the stability of the sRNA*mRNA complexes, rather than their rate of formation, best predicted in vivo activity. These studies demonstrate that binding of Hfq to the rpoS mRNA is critical for sRNA regulation under normal conditions, but if the stability of the sRNA*mRNA complex is sufficiently high, the requirement for Hfq can be bypassed.
    Keywords: Escherichia Coli -- Metabolism ; Host Factor 1 Protein -- Metabolism ; RNA, Bacterial -- Metabolism ; RNA, Untranslated -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The Journal of Bacteriology, 2010, Vol. 192(21), p.5559
    Description: Small noncoding RNAs (sRNAs) regulate gene expression in Escherichia coli by base pairing with mRNAs and modulating translation and mRNA stability. The sRNAs DsrA and RprA stimulate the translation of the stress response transcription factor RpoS by base pairing with the 5' untranslated region of the rpoS mRNA. In the present study, we found that the rpoS mRNA was unstable in the absence of DsrA and RprA and that expression of these sRNAs increased both the accumulation and the half-life of the rpoS mRNA. Mutations in dsrA, rprA, or rpoS that disrupt the predicted pairing sequences and reduce translation of RpoS also destabilize the rpoS mRNA. We found that the rpoS mRNA accumulates in an RNase E mutant strain in the absence of sRNA expression and, therefore, is degraded by an RNase E-mediated mechanism. DsrA expression is required, however, for maximal translation even when rpoS mRNA is abundant. This suggests that DsrA protects rpoS mRNA from degradation by RNase E and that DsrA has a further activity in stimulating RpoS protein synthesis, rpoS mRNA is subject to degradation by an additional pathway, mediated by RNase III, which, in contrast to the RNase E-mediated pathway, occurs in the presence and absence of DsrA or RprA. rpoS mRNA and RpoS protein levels are increased in an RNase III mutant strain with or without the sRNAs, suggesting that the role of RNase III in this context is to reduce the translation of RpoS even when the sRNAs are acting to stimulate translation. doi: 10.1128/JB.00464-10
    Keywords: Messenger Rna -- Properties ; Protein Synthesis -- Research ; Bacterial Genetics -- Research ; Translation (Genetics) -- Research ; Escherichia Coli -- Genetic Aspects;
    ISSN: 0021-9193
    ISSN: 00219193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Microbial cell factories, 07 April 2014, Vol.13(1), pp.50
    Description: The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.
    Keywords: Escherichia Coli -- Metabolism ; Oxygen -- Metabolism ; Recombinant Proteins -- Biosynthesis
    E-ISSN: 1475-2859
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Bacteriology, 2005, Vol. 187(19), p.6770
    Description: The rcs phosphorelay pathway components were originally identified as regulators of capsule synthesis. In addition to the transmembrane sensor kinase RcsC, the RcsA coregulator, and the response regulator RcsB, two new components have been characterized, RcsD and RcsF. RcsD, the product of the yojN gene, now renamed rcsD, acts as a phosphorelay between RcsC and RcsB. Transcription of genes for capsule synthesis (cps) requires both RcsA and RcsB; transcription of other promoters, including that for the small RNA RprA, requires only RcsB. RcsF was described as an alternative sensor kinase for RcsB. We have examined the role of RcsF in the activation of both the rprA and cps promoters. We find that a number of signals that lead to activation of the phosphorelay require both RcsF and RcsC; epistasis experiments place RcsF upstream of RcsC. The RcsF sequence is characteristic of lipoproteins, consistent with a role in sensing cell surface perturbation and transmitting this signal to RcsC. Activation of RcsF does not require increased transcription of the gene, suggesting that modification of the RcsF protein may act as an activating signal. Signals from RcsC require RcsD to activate RcsB. Sequencing of an rcsC allele, rcsC137, that leads to high-level constitutive expression of both cps and rprA suggests that the response regulator domain of RcsC plays a role in negatively regulating the kinase activity of RcsC. The phosphorelay and the variation in the activation mechanism (dependent upon or independent of RcsA) provide multiple steps for modulating the output from this system.
    Keywords: Cell Surface ; Promoters ; RNA ; Epistasis ; Lipoproteins ; Transcription ; Signal Transduction ; Escherichia Coli ; Amino Acids, Peptides and Proteins;
    ISSN: 0021-9193
    ISSN: 00219193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Bacteriology, July, 1996, Vol.178(13-14), p.3742(6)
    Description: The insertion of the F-pilin precursor, propilin, into the Escherichia coli membrane requires propilin maturation by leader peptidase B (LepB) activity and energy supplied by the proton motive force. The maturation of propilin is inhibited at nonpermissive temperature in a LepB host but is unaffected by suppression or absence of SecA and SecY. LepB processes propilin to form a 7-kDa peptide which is acetylated in the presence of the F plasmid transfer product TraX.
    Keywords: Proteases -- Physiological Aspects ; Peptides -- Research ; Escherichia Coli -- Research ; Bacterial Cell Walls -- Observations
    ISSN: 0021-9193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Applied and environmental microbiology, 01 August 2018, Vol.84(15)
    Description: Experimental evolution of K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS knockout of (encoding the positive regulator of the phosphate regulon). A :: knockout increased growth at high pH. mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in [poly(A) polymerase] also increased growth at high pH. Three out of four populations showed deletions of , an inhibitor of TorR, which activates expression of (trimethylamine -oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma factor RpoS, either in the coding gene or in genes for regulators of RpoS expression. RpoS is required for survival at extremely high pH. In our microplate assay, deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadaptors that block degradation (IraM, IraD, and IraP). Other genes with mutations after high-pH evolution encode regulators, such as those encoded by () (PhoPQ regulator), (nitrogen starvation sigma factor), , and , as well as envelope proteins, such as those encoded by and Overall, evolution at high pH selects for mutations in key transcriptional regulators, including and the stationary-phase sigma factor RpoS. in its native habitat encounters high-pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter the function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms.
    Keywords: Phob ; Rpos ; Evolution ; High Ph ; Biological Evolution ; Bacterial Proteins -- Metabolism ; Culture Media -- Chemistry ; Escherichia Coli -- Genetics ; Sigma Factor -- Metabolism
    ISSN: 00992240
    E-ISSN: 1098-5336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Annual Review of Microbiology, 2011, Vol.65, p.189-213
    Description: Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.
    Keywords: Hfq ; (p)ppGpp ; RssB ; sRNA ; ClpXP
    ISSN: 0066-4227
    E-ISSN: 1545-3251
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Annual review of microbiology, 08 September 2018, Vol.72, pp.111-139
    Description: RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
    Keywords: Bglj ; Gade ; Colanic Acid ; Motility ; Two-Component System
    ISSN: 00664227
    E-ISSN: 1545-3251
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: New BIOTECHNOLOGY, 25 January 2013, Vol.30(2), pp.269-273
    Description: When exposed to the nonmetabolized glucose derivative alpha methyl glucoside (αMG), both K-12 (JM109 and MG1655) and B (BL21) respond by reducing the concentration of the mRNA of the gene which is responsible for the biosynthesis of the glucose transporter EIICB . This occurs through the over-expression of the noncoding small RNA SgrS, which interacts specifically with the mRNA of the gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in B (BL21). Unlike K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in B. This observation opens a new approach towards controlling bacterial metabolism through the use of noncoding RNA.
    Keywords: Engineering ; Biology
    ISSN: 1871-6784
    E-ISSN: 1876-4347
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages