Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949244012702882
    Format: 1 online resource (XVI, 448 p.)
    ISBN: 9781501509247 , 9783110637236
    Series Statement: Reviews in Mineralogy & Geochemistry , 35
    Content: Volume 35 of Reviews in Mineralogy defines and explore the topic of geomicrobiology. It is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. Basis for this volume was the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah.
    Note: Mode of access: Internet via World Wide Web. , In English.
    In: DGBA Physical Sciences 1990 - 1999, De Gruyter, 9783110637236
    Additional Edition: ISBN 9780939950454
    Language: English
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    kobvindex_GFZ96779
    Format: XIV, 294 S.
    ISBN: 0-939950-71-5 , 978-0-939950-71-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 59
    Content: As geomicrobiologists, we seek to understand how some of nature's most complex systems work, yet the very complexity we seek to understand has placed many of the insights out of reach. Recent advances in cultivation methodologies, the development of ultrahigh throughput DNA sequencing capabilities, and new methods to assay gene expression and protein function open the way for rapid progress. In the eight years since the first Geomicrobiology volume (Geomicrobiology: Interactions between microbes and minerals; volume 35 in this series) we have transformed into scientists working hand in hand with biochemists, molecular biologists, genome scientists, analytical chemists, and even physicists to reveal the most fundamental molecular-scale underpinnings of biogeochemical systems. Through synthesis achieved by integration of diverse perspectives, skills, and interests, we have begun to learn how organisms mediate chemical transformations, the ways in which the environment determines the architecture of microbial communities, and the interplay between evolution and selection that shapes the biodiversity of the planet. This volume presents chapters written by leaders in the rapidly maturing field we refer to as molecular geomicrobiology. Most of them are relatively young researchers who share their approaches and insights and provide pointers to exciting areas ripe for new advances. This volume ties together themes common to environmental microbiology, earth science, and astrobiology. The resesarch presented here, the associated short course, and the volume production were supported by funding from many sources, notably the Mineralogical Society of America, the Geochemical Society, the US Department of Energy Chemical Sciences Program and the NASA Astrobiology Institute.
    Note: MAB0014.001: M 05.0616 , Chapter 1. The search for a molecular-level understanding of the processes that underpin the Earth's biogeochemical cycles by Jillian F. Banfield, Gene W. Tyson, Eric E. Allen, and Rachel J. Whitaker, p. 1 - 8 Chapter 2. What genetics offers geobiology by Dianne K. Newman and Jeffrey A. Gralnick, p. 9 - 26 Chapter 3. Enzymology of electron transport: energy generation with geochemical consequences by Thomas J. DiChristina, Jim K. Fredrickson, and John M. Zachara, p. 27 - 52 Chapter 4. Siderophores and the dissolution of iron-bearing minerals in marine systems by Stephan M. Kraemer, Alison Butler, Paul Borer, and Javiera Cervini-Silva, p. 53 - 84 Chapter 5. Geomicrobiological cycling of iron by Andreas Kappler and Kristina L. Straub, p. 85 - 108 Chapter 6. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems by Benjamin Gilbert, Jillian F. Banfield, p. 109 - 156 Chapter 7. The organic-mineral interface in biominerals by Pupa Gilbert, Mike Abrecht, and Bradley H. Frazer, p. 157 - 186 Chapter 8. Catalysis and prebiotic synthesis by James P. Ferris, p. 187 - 210 Chapter 9. The evolution of biological carbon and nitrogen cycling-a genomic perspective by Jason Raymond, p. 211 - 232 Chapter 10. Building the biomarker tree of life by Jchen J. Brocks and Ann Pearson, p. 233 - 258 Chapter 11. Population dynamics through the lens of extreme environments by Rachel J. Whitaker and Jillian F. Banfield, p. 259 - 278 Chapter 12. Metabolism and genomics: adventures derived from complete genome sequencing by Kenneth H. Nealson and Barbara Methe, p. 279 - 294
    In: Reviews in mineralogy & geochemistry
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Washington, DC : National Aeronautics and Space Administration, Scientific and Technical Information Div.
    UID:
    gbv_275654265
    Format: XVII, 206 S , graph. Darst
    Language: Undetermined
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9948327936302882
    Format: 1 online resource (xiv, 294 pages) : , illustrations.
    ISBN: 9781501509551 (e-book)
    Series Statement: Reviews in Mineralogy and Geochemistry ; Volume 59
    Note: "The short course, sponsored by the Mineralogical Society of America ... was held at the University of California, Berkeley, December 3-4, 2005 prior to the fall AGU meeting in San Francisco, California"--Page [v]. , The search for a molecular-level understanding of the processes that underpin the Earth's biogeochemical cycles / Jillian F. Banfield ... [et al.] -- What genetics offers geobiology / Dianne K. Newman, Jeffrey A. Gralnick -- Enzymology of electron transport : energy generation with geochemical consequences / Thomas J. DiChristina, Jim K. Frederickson, John M. Zachara -- Siderophores and the dissolution of iron-bearing minerals in marine systems / Stephan M. Kraemer ... [et al.] -- Geomicrobiological cycling of iron / Andreas Kappler, Kristina L. Straub -- Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems / Benjamin Gilbert, Jillian F. Banfield -- The organic-mineral interface in biominerals / P.U.P.A. Gilbert, Mike Abrecht, Bradley H. Frazer -- Catalysis and prebiotic synthesis / James P. Ferris -- The evolution of biological carbon and nitrogen cycling : a genomic perspective / Jason Raymond -- Building the biomarker tree of life / Jochen J. Brocks, Ann Pearson -- Population dynamics through the lens of extreme environments / Rachel J. Whitaker, Jillian F. Banfield -- Metabolism and genomics : adventures derived from complete genome sequencing / Karen E. Nelson, Barbara Methé.
    Additional Edition: Print version: Molecular geomicrobiology. Chantilly, Virginia : The Mineralogical Society of America, c2005 ISBN 9780939950713
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edocfu_9958998813502883
    Format: 1 online resource (464 p.)
    ISBN: 9781501509247
    Series Statement: Reviews in Mineralogy & Geochemistry ; 35
    Content: Volume 35 of Reviews in Mineralogy defines and explore the topic of geomicrobiology. It is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. Basis for this volume was the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah.
    Note: Frontmatter -- , FOREWORD -- , Table of Contents -- , Preface / , Chapter 1. MICROORGANISMS AND BIOGEOCHEMICAL CYCLES: WHAT CAN WE LEARN FROM LAYERED MICROBIAL COMMUNITIES? / , Chapter 2. MICROBIAL DIVERSITY IN OCEAN, SURFACE AND SUBSURFACE ENVIRONMENTS / , Chapter 3. PROCESSES AT MINERALS AND SURFACES WITH RELEVANCE TO MICROORGANISMS AND PREBIOTIC SYNTHESIS / , Chapter 4. SPATIAL RELATIONSHIPS BETWEEN BACTERIA AND MINERAL SURFACES / , Chapter 5. SURFACE-MEDIATED MINERAL DEVELOPMENT BY BACTERIA / , Chapter 6. MICROBIAL BIOMINERALIZATION OF MAGNETIC IRON MINERALS: MICROBIOLOGY, MAGNETISM AND ENVIRONMENTAL SIGNIFICANCE / , Chapter 7. BACTERIALLY MEDIATED MINERAL FORMATION: INSIGHTS INTO MANGANESE(II) OXIDATION FROM MOLECULAR GENETIC AND BIOCHEMICAL STUDIES / , Chapter 8. ALGAL DEPOSITION OF CARBONATES AND SILICATES / , Chapter 9. REACTIONS OF EXTRACELLULAR ORGANIC LIGANDS WITH DISSOLVED METAL IONS AND MINERAL SURFACES / , Chapter 10. THE BACTERIAL VIEW OF THE PERIODIC TABLE: SPECIFIC FUNCTIONS FOR ALL ELEMENTS / , Chapter 11. GEOMICROBIOLOGY OF SULFIDE MINERAL OXIDATION / , Chapter 12. BIOGEOCHEMICAL WEATHERING OF SILICATE MINERALS / , Chapter 13. LONG-TERM EVOLUTION OF THE BIOGEOCHEMICAL CARBON CYCLE / , List of volumes currently available in the Reviews in Mineralogy series , In English.
    Additional Edition: ISBN 9780939950454
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almahu_9949243904802882
    Format: 1 online resource (XVI, 454 p.)
    ISBN: 9781501509360 , 9783110637212
    Series Statement: Reviews in Mineralogy & Geochemistry , 55
    Content: The goal for Volume 55 of Reviews in Mineralogy and Geochemistry was to bring together a summary of the isotope geochemistry of non-traditional stable isotope systems as is known through 2003 for those elements that have been studied in some detail, and which have a variety of geochemical properties. In addition, recognizing that many of these elements are of interest to workers who are outside the traditional stable isotope fields, we felt it was important to include discussions on the broad isotopic variations that occur in the solar system, theoretical approaches to calculating isotopic fractionations, and the variety of analytical methods that are in use. We hope, therefore, that this volume proves to be useful to not only the isotope specialist, but to others who are interested in the contributions that these non-traditional stable isotopes may make toward understanding geochemical and biological cycles. The review chapters in this volume were the basis for a two-day short course on nontraditional stable isotopes held prior (May 15-16, 2004) to the spring AGU/CGU Meeting in Montreal, Canada.
    Note: Mode of access: Internet via World Wide Web. , In English.
    In: DGBA Physical Sciences 2000 - 2014, De Gruyter, 9783110637212
    Additional Edition: ISBN 9780939950676
    Language: English
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Book
    Book
    Washington, D.C. : Mineralogical Society of America
    UID:
    kobvindex_GFZ10853
    Format: 448 S.
    ISBN: 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 35
    Content: Microorganisms cause mineral precipitation and dissolution and control the distribution of elements in diverse environments at and below the surface of the Earth. Conversely, mineralogical and geochemical factors exert important controls on microbial evolution and the structure of microbial communities. This was the rationale for the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah. Minerals have been known and honored since humans realized their essential contributions to the "terra firma" and stone tools thrust our species on the path of cultural evolution. Microbes are the oldest living creatures, probably inhabiting at least a few salubrious environments on the earth as early as 3.8 billion years ago. At this moment in history we are only beginning to appreciate the intimate juxtaposition and interdependence of minerals and microbes. We have been nudged into this position by the realization that our earth is finite, and the recognition of many global environmental problems that minerals and microbes contribute to, both positively and negatively. In addition, our globe may not be the only site in the solar system where 'life' arose, or may persist. What all of these concerns enunciate is that we as scientists only dimly comprehend our own dynamic "terrestrial halls." This short course and volume have been generated with great enthusiasm for grasping as much as possible of the whole panorama of possibilities that involve both the inorganic and biologic realms . Over 3600 mineral species have been defined and their relationships to each other and the environments in which they form have been documented. This vast data base, collected over the past several hundred years and constantly added to and upgraded, is a monument to the research efforts of many geoscientists focused on the inorganic realm. Much of this data has come from investigators intrigued by the novelty, beauty, and versatility of minerals, direct expressions of the chemistry and physics of geologic processes. We are now adding a new dimension to questions of mineral formation, dissolution, and distribution: what were, are, and will be the contributions of microbes to these basic components of the environment. Microbes have also been known for hundreds of years. However, their small size (0.5 to 5 µm in diameter) and the difficulties associated with identifying a species unless it was grown in the laboratory (cultured), precluded thorough analysis. The advent of molecular biology has only recently made it possible to evaluate microbial evolutionary relatedness (phylogeny) and physiological diversity. These techniques are now being applied to study of microbial populations in natural environments. It is becoming very clear that the surface of Earth is populated by far more species of microbes than there are types of minerals. We are now exploring every portion of the globe and finding the relationships under the rubric "geomicrobiology." The ocean deeps are characterized by a diversity of microorganisms, including those associated with manganese nodules. The profusion and concentration of minerals created at ocean ridges and vents matches the variety of microorganisms, large animals, and plants there. The snowy tops of mountain ranges and glaciers of Antarctica harbor not just ice but whole bacterial communities whose cellular types and activities need elucidation. The equatorial jungles and the deserts, with their enormous diversity of ecological niches, further challenge us. The diversity of geographic, geologic, and biologic environments, including some contributed by humans (e.g. mines, air-conditioning equipment), can now also be explored in detail. Modern studies use protocols developed to preserve or measure in situ chemical and physical characteristics. Electron microscopes allow direct characterization of mineral and biological morphology and internal structures. Spectroscopic techniques permit complimentary chemical analysis, including determination of oxidation states, with very high spatial resolution. Other studies quantitatively measure isotopic abudances. These data serve to distinguish biologically mediated, or biologically controlled formation of the mineral from an abiotic process and mechanism. Each ecological niche requires accurate characterization of the mineralogic and biologic entities in order for us to begin to understand the range of dynamic relationships. We can pose many questions. Is the mineral only a substrate, or is its occurrence and stability impacted by microbiologic activity and metabolic requirements? Which minerals are of microbiological rather than inorganic origin and what are the mechanisms by which organisms dictate the morphology and structure of the solid phase formed? How do organic metabolic products bind metals and change their form and distribution, with implications for metal toxicity and geochemical cycles? How do inorganic reactions such as mineral dissolution and precipitation impact microbial populations through control of their physical and chemical environments? Clearly, new and excitingly research areas exist for all varieties of scientists. Although published by the Mineralogical Society of America, the authors of this volume include microbiologists, molecular biologists, biochemists, biophysicists, bioengineers as well as biomineralogists. Here, they bring together their respective expertise and perspectives to provide disciplinary and interdisciplinary background needed to define and further explore the topic of geomicrobiology. The volume is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. In detail: Nealson and Stahl acquaint us with the basic properties of prokaryotes, including their size and structure. They define the types and ranges of microorganisms and their metabolisms and describe their impacts on some important biogeochemical cycles. Barns and Nierzwicki-Bauer document the phylogenetic relationships and evolution of microorganisms, begging some fundamental questions that might be now just beyond our grasp: What was the 'last common ancestor'? The physiology, biochemistry and ecology of hyperthermophilic, and the many diverse geologically important microbial species from the lithosphere and hydrosphere, as well as some of the techniques employed, are presented. Banfield and Hamers describe and integrate the processes acting on minerals and at surfaces relevant to microorganisms, examining the factors that control mineralogy, mineral forms, and the stability of phases. Surface properties and reaction rates for dissolution, precipitation, and growth of important classes of minerals are discussed. The possible role of mineral surfaces in formation of prebiotic molecules needed to explain the origin of life is examined. Little, Wagner and Lewandowski describe biofilms, an essential interface between microbes and minerals. They demonstrate that these membranes, with their unique morphological and structural attributes, are sites where much activity related to dissolution and/or formation of minerals takes place. Biology makes it possible to move molecules and elements against a gradient. Many questions regarding the transfer of elements from minerals to microbes at this important heterogeneous interface remain. Fortin, Ferris and Beveridge review surface-mediated mineral development by bacteria. Fresh or oceanic waters, anaerobic or aerobic environments provide discretely different ecologies, bacterial entities, and resulting mineralogies. It is obvious from this presentation that investigators have just scratched the surface of microbial mineralization processes. Bazlinski and Moskowitz review the magnetic biominerals and provide insights into the environmental and biological significance of these few tens of nanometer-sized mineral products. The magnetosome chemistry and biochemistry is probably the best understood of any biologically precipitated mineral. Their formation and unique properties underscore the roles these biomaterials play in the rock magnetic record and in geochemical cycles. Tebo, Ghiorse, van Waasbergen, Siering and Caspi contribute data on the roles of Mnminerals and Mn(II) oxidation in geologic environments. Their chapter encompasses molecular genetic and biochemical investigations. Manganese oxides and oxyhydroxides are notoriously difficult to identify and the crystal chemistry of these phases is a research effort on its own. The prospect of learning how microbes utilize the multiple oxidation states of Mn (2+, 3+ and 4+) as a source of energy sharpens the motivation for interdisciplinary study. Manganese is also known as a cofactor in the production and activation of the enzymes that digest large biomolecules that must be the source of the smaller molecular species and ultimately the building blocks of C, N, 0, H required by all species. How have the mechanisms identified in the bacterial systems been transferred up the phylogenetic tree to plants and humans? This is an expanding and intriguing area for further investigation. DeVrind-de Jong and de Vrind address silicate and carbonate deposition by algae (eukaryotic photosynthetic microorganisms). This chapter documents the mechanisms of biomineralization of diatoms and coccoliths. These abundant aquatic organisms are responsible for huge volumes of siliceous sediments and calcium carbonate deposits world wide. The implications of algal biomineralization for climatic variation throughout much of the Earth's history may be quite significant. Stone leads us though a quantitative approach to evaluating reactions between organic molecules and cations. He considers available extracellular organic ligands and the roles these play in uptake of metals. He documents the basic chemical speciation and complexation for several elements, making metal to metal comparisons. Remaining challenges involve coordinating the organic and inorganic results of biologic activity. Following the discussion of biomineralization and interactions between organic compounds and cations, Silver discusses the strategies microorganisms have evolved to deal with toxic metal concentrations in solution. Beyond the fundamental biological significance, this has important implications for understanding microbial populations in contaminated environments. The impact on the geochemical form (speciation) and distribution of elements is also discussed. Nordstrom and Southam summarize sulfide mineral oxidation and dissolution kinetics and devote considerable effort to describing the specific contributions of microorganisms, mostly bacteria. Despite the vast amount of accumulated information, many unanswered questions remain. Barker, Welch and Banfield address weathering of silicate minerals. This topic encompasses not only mineralogy but geomorphology, microbiology, and geochemistry. The necessary interdisciplinary mode of these investigations is highlighted by discussion of the role(s) of bacterial nutrition, groundwater chemistry, and biochemistry. There are obvious implications for hazardous waste storage, a currently daunting and politicized topic that requires predictions over thousands to millions of years. Finally, Des Marais treats the long term evolution of the carbon cycle, adopting a biogeochemical view. He discusses the sources, sinks and the transfer of the element over geologic time. Consideration of such a basic series of questions relating to the partitioning of carbon necessitate interdisciplinary crossovers. It is a fitting conclusion to a dialogue in progress.
    Note: MAB0014.001: M 97.0491 , MAB0036: Washington : Mineralogical Society of America, 1997. - 448 S. , MAB0039: Monographie aus Schriftenreihe , Chapter 1. Microorganisms and Biogeochemical Cycles: What Can We Learn from Layered Microbial Communities by Kenneth H. Nealson and David A. Stahl, p. 5 - 34 Chapter 2. Microbial Diversity in Modern Subsurface, Ocean, Surface Environments by Susan M. Barns and Sandra Nierzwicki-Bauer, p. 35 - 80 Chapter 3. Processes at Minerals and Surfaces with Relevance to Microorganisms and Prebiotic Synthesis by Jillian F. Banfield and Robert J. Hamers, p. 81 - 122 Chapter 4. Spatial Relationships between Bacteria and Mineral Surfaces by Brenda J. Little, Patrica A. Wagner, and Zbigniew Lewandowski, p. 123 - 160 Chapter 5. Surface-mediated Mineral Development by Bacteria by D. Fortin, F.G. Ferris, and T.J. Beveridge, p. 161 - 180 Chapter 6. Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance by Dennis A. Bazylinksi and Bruce M. Moskowitz, p. 181 - 224 Chapter 7. Bacterially-Mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies by Bradley M. Tebo, William C. Ghiorse, Lorraine G. van Waasbergen, Patricia L. Siering, and Ron Caspi, p. 225 - 266 Chapter 8. Algal Deposition of Carbonates and Silicates by Elisabeth W. de Vrind-de Jong and Johannes P. M. de Vrind, p. 267 - 308 Chapter 9. Reactions of Extracellular Organic Ligands with Dissolved Metal Ions and Mineral Surfaces by Alan T. Stone, p. 309 - 344 Chapter 10. The Bacterial View of the Periodic Table: Specific Functions for All Elements by Simon Silver, p. 345 - 360 Chapter 11. Geomicrobiology of Sulfide Mineral Oxidation by D. Kirk Nordstrom and Gordon Southam, p. 361 - 390 Chapter 12. Biogeochemical Weathering of Silicate Minerals by William W. Barker, Susan A. Welch, and Jillian F. Banfield, p. 391 - 428 Chapter 13. Long-term Evolution of the Biogeochemical Carbon Cycle by David J. Des Marais, p. 429 - 448
    In: Reviews in mineralogy
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    gbv_1878606549
    Format: 7 , Diagramme, Illustrationen
    ISSN: 1096-0953
    Content: Extracellular electron transfer, Burkholderia contaminans ZCC, Gold nanoparticles, Biorecovery
    Note: Available online: 11 February 2022
    In: Environmental research, San Diego, Calif. : Elsevier, 1967, 210(2022), Artikel-ID 112910, 1096-0953
    In: volume:210
    In: year:2022
    In: elocationid:112910
    In: extent:7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages