Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    In: Journal of Analytical Atomic Spectrometry, 2018, Vol.33(9), pp.1432-1468
    Description: This tutorial review focuses on the use of ICP-MS based techniques for the analysis of metal-containing nanoparticles and colloids. Within the first part the capabilities of stand alone ICP-MS for the analysis of total metal contents and the suitability of stable isotopes for nanoparticle tracking (stable isotope labelling and naturally occurring variation in isotope ratios) are introduced (Chapter 3). Special focus was given on single particle ICP-MS (sp-ICP-MS) mode (Chapter 4). Upon a brief introduction into the theoretical concept, critical aspects such as calibration strategies, dwell time as well as ionic background were discussed and practical advice is given. References to current data assessment sheets are provided. Furthermore, a brief chapter on general sample preparation aspects is included within the first part (Chapter 2). The second part is dedicated to fractionation/separation systems, such as field-flow fractionation (FFF), hydrodynamic chromatography (HDC), high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled on-line with ICP-MS detection for metal-based nanoparticle and colloid analysis (Chapter 5). Each section starts with an introduction into the theoretical concept of the respective fractionation/separation system, followed by practical hints regarding method development ( e.g. selection of appropriate carrier/mobile phase, membrane/stationary phase) as well as critical aspects and limitations. Particular attention is payed to laser ablation ICP-MS (LA-ICP-MS) for spatially resolved nanoparticle analysis. Each section concludes with selected application examples of the respective analytical technique from the most relevant fields of nanoparticle use or exposure (consumer products, food, medicine and environment), highlighting the performance of each technique in metal-based nanoparticle analysis. Chapter 6 is dedicated to aspects of quality assurance. Various critical points regarding method development and validation, mass balance, size calibration and quantification from the previous sections are revisited, discussed and practical advice is given. Finally, the authors provide some concluding remarks and future perspectives (Chapter 7). Furthermore, a flow-chart is included as a hands-on overview on all ICP-MS based techniques discussed within this tutorial review intended as a method-decision tool for users.
    Keywords: Isotopes ; Fractionation ; Calibration ; Electrophoresis ; Chromatography ; High Performance Liquid Chromatography ; Nanoparticles ; Quality Assurance ; Nanoparticles ; Laser Ablation ; Separation ; Isotope Ratios ; Dwell Time;
    ISSN: 0267-9477
    E-ISSN: 1364-5544
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Analytica Chimica Acta, 2010, Vol.682(1), pp.23-36
    Description: The large number of patients suffering from neurodegenerative diseases like Alzheimer's disease and Parkinson's disease motivates many research groups worldwide to investigate pathogenic factors and molecular mechanisms of these diseases. Recent studies and reviews indicate that metals are involved in these neurodegenerative processes in case their homeostasis in the brain is disturbed. Important is that the focus of these recent studies is on essential metals like Fe, Cu, Zn and Mn, but not on the well-known neurotoxic metals like Hg and Pb. Key issues for understanding metal induced neurotoxic effects are the transport processes across the neural barriers, the metal binding forms (species) and their interactions with neuronal structures. Total metal concentrations in cerebrospinal fluid were published in several studies for controls and patients, but the amount of reliable data sets is not yet sufficient for clear definition of normal and elevated levels. The need for more detailed information on metal species in CSF is highlighted in this review. However, studies on element speciation analysis, that means identification and quantification of the various binding forms of metals in cerebrospinal fluid, are rare. The major reasons therefore are difficulties in accessing cerebrospinal fluid samples, the non-covalent nature of many metal species of interest and their rather low concentrations. In spite of this, several applications demonstrate the potential of hyphenated techniques as additional diagnostic tools for cerebrospinal fluid analysis. This review shows the importance of trace element analysis and more specifically of element speciation in cerebrospinal fluid for an improved understanding of pathologic mechanisms promoting neuro-degeneration. Respective analytical techniques are also highlighted. Additionally, biochemical assays for selected high molecular mass metal species are summarized and critically discussed. Moreover additional potential techniques like direct non-invasive methods as well as mathematical modelling approaches are considered. Data on total concentrations of numerous elements in CSF as well as speciation information of elements such as Al, As, Ca, Cd, Cu, Fe, Mg, Mn, Hg, Pb, Se and Zn in CSF are summarized.
    Keywords: Cerebrospinal Fluid ; Element Speciation ; Neurodegenerative Disorders ; Chemistry
    ISSN: 0003-2670
    E-ISSN: 1873-4324
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Analytical and Bioanalytical Chemistry, Jan, 2009, Vol.393(1), p.415(4)
    Description: Byline: Volker Nischwitz (1), Bernhard Michalke (1) Author Affiliation: (1) Helmholtz Zentrum Munchen, Institute of Ecological Chemistry, 85764, Neuherberg, Germany Article History: Registration Date: 30/10/2008 Online Date: 01/12/2008
    ISSN: 1618-2642
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Analytical chemistry, 01 September 2005, Vol.77(17), pp.5551-63
    Description: The large number of arsenic species known to be present in marine samples and their broad range of chemical properties pose a significant challenge for arsenic speciation analysis. The predominantly used ICPMS detection online with HPLC only provides element-selective information, which is not sufficient for the identification of arsenic species without standards. However, electrospray tandem mass spectrometry in the selected reaction monitoring (SRM) mode enables molecule-selective detection with high sensitivity for quantification. A new HPLC-ES-SRM method was developed for the determination of more than 20 organoarsenic species. Two chromatographic systems were compared, an anion exchange method and a combined cation anion exchange method. Collision-induced dissociation breakdown curves were constructed for all arsenic species investigated and used to optimize the SRM conditions. External calibration was performed with mixed standard solutions containing 21 arsenic species. Two SRM transitions were monitored for most of the analytes, and their intensity ratio was used for quality control. The developed methods were applied for the quantification of arsenic species in extracts of four marine reference materials. Spiking experiments revealed, especially for the early-eluting analytes on the anion exchange system, significant signal suppression by coeluting matrix constituents. Therefore, the standard addition approach was used for quantification. AsB, the major arsenic species in tuna CRM 627 and DORM-2, was accurately quantified with the combined cation anion exchange ES-SRM method.
    Keywords: Online Systems ; Arsenicals -- Analysis ; Chromatography, High Pressure Liquid -- Methods ; Spectrometry, Mass, Electrospray Ionization -- Methods
    ISSN: 0003-2700
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Analytical and bioanalytical chemistry, June 2014, Vol.406(16), pp.3919-27
    Description: This work represents a first systematic approach to the size-based elemental quantification and size estimation of metal(loid) oxide nanoparticles such as silica (SiO2) in a real food matrix using asymmetric flow field-flow fractionation coupled online with inductively coupled plasma mass spectrometry (ICP-MS) and multi-angle light scattering (MALS) and offline with transmission electron microscopy (TEM) with energy-dispersive X-ray analysis (EDAX). Coffee creamer was selected as the model sample since it is known to contain silica as well as metal oxides such as titania at the milligramme per kilogramme levels. Optimisation of sample preparation conditions such as matrix-to-solvent ratio, defatting with organic solvents and sonication time that may affect nanoparticle size and size distribution in suspensions was investigated. Special attention was paid to the selection of conditions that minimise particle transformation during sample preparation and analysis. The coffee creamer matrix components were found to stabilise food grade SiO2 particles in comparison with water suspensions whilst no significant effect of defatting using hexane was found. The use of sample preparation procedures that mimic food cooking in real life was also investigated regarding their effect on particle size and particle size distribution of silica nanoparticles in the investigated food matrix; no significant effect of the water temperature ranging from ambient temperature to 60 °C was observed. Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS) analysis of extracts of both unspiked coffee creamer and coffee creamer spiked with food grade silicon dioxide, using different approaches for size estimation, enabled determination of SiO2 size-based speciation. Element-specific detection by ICP-MS and post-FFF calibration with elemental calibration standards was used to determine the elemental composition of size fractions separated online by FFF. Quantitative data on mass balance is provided for the size-based speciation of the investigated inorganic nano-objects in the complex matrix. The combination of FFF with offline fractionation by filtration and with detection by ICP-MS and TEM/EDAX has been proven essential to provide reliable information of nanoparticle size in the complex food matrix.
    Keywords: Food Additives -- Chemistry ; Mass Spectrometry -- Methods ; Nanoparticles -- Chemistry ; Silicon Dioxide -- Chemistry
    ISSN: 16182642
    E-ISSN: 1618-2650
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Analytical Atomic Spectrometry, 2012, Vol.27(7), pp.1084-1092
    Description: Titanium dioxide in nanoparticulate form is used in large scale in a variety of consumer products including sunscreens. There is an increasing need for methodology for the reliable characterisation of the particle size and size dependent elemental composition in these complex matrices. Such measurement capability is essential for underpinning safety assessments, for quality control of existing products and for correlation of nanoparticle characteristics with biological effects observed in toxicity tests. This work describes the first systematic comparison and optimisation of extraction methods for titanium dioxide nanoparticles in sunscreen samples. Sunscreens were selected because of their wide use, high fat content and matrix of high complexity. Defatting of the sample with hexane followed by bath sonication with an aqueous extractant was found to provide stable suspensions of secondary titanium dioxide particles for their size characterisation by flow field flow fractionation on-line with element selective detection by inductively coupled plasma mass spectrometry. Further addition of a small amount of hexane to the aqueous extractant resulted in particle disaggregation and thus allowed for characterisation of the primary particle size. A novel approach based on sample spiking with aluminium-labelled titanium dioxide reference particles of known size was used to study the effect of extraction and separation conditions on particle size distribution in the presence of the real sample matrix. The developed methodology was applied to analysis of commercial sunscreens with various sun protection factors. Titanium extraction efficiency, particle size distribution and titanium dioxide recovery from the FFF channel were determined for each product.
    Keywords: Extraction ; Hexanes ; Methodology ; Nanoparticles ; Nanostructure ; Particle Size Distribution ; Sunscreen Products ; Titanium Dioxide ; Instruments and Measurements (So) ; Alloy/Material Development (AI);
    ISSN: 0267-9477
    E-ISSN: 1364-5544
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Radiology, February 2019, Vol.290(2), pp.340-348
    Description: Purpose To investigate the long-term course of MRI signal intensity (SI) changes and the presence of gadolinium in the rat brain during a 1-year period after multiple administrations of gadolinium-based contrast agents (GBCAs). Materials and Methods Rats received a linear GBCA (gadodiamide, gadopentetate dimeglumine, gadobenate dimeglumine), a macrocyclic GBCA (gadobutrol, gadoterate meglumine, gadoteridol), or saline. Animals received eight injections over 2 weeks (1.8 mmol/kg per injection). Brain MRI and gadolinium measurements were performed with inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS 5, 26, and 52 weeks after administration. Results Animals that received linear GBCAs showed higher deep cerebellar nuclei (DCN)-to-brainstem SI ratios compared with the saline group (P .42) and the cerebellar gadolinium concentrations decreased between weeks 5 and 52, reaching 0.08 nmol/g (gadobutrol), 0.04 nmol/g (gadoterate meglumine), and 0.07 nmol/g (gadoteridol). The respective laser ablation ICP-MS analysis showed no gadolinium depositions. Conclusion Increased signal intensity in the deep cerebellar nuclei of rats persists for at least 1 year after administration of linear gadolinium-based contrast agents (GBCAs), in line with persistent brain gadolinium concentrations with no elimination after the initial 5-week period. The animals that received macrocyclic GBCAs showed an ongoing elimination of gadolinium from the brain during the entire observation period. © RSNA, 2018.
    Keywords: Abridged;
    ISSN: 00338419
    E-ISSN: 1527-1315
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 01 September 2018, Vol.634, pp.305-315
    Description: The leaching of P from the upper 20 cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400 nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1–25%; C : 3–17%; Al: 〈4%; Si, Ca, Mn: all 〈2%). The proportion of colloid–associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies.
    Keywords: Colloids ; Forest Soil ; Leaching ; Mesocosm ; Nanoparticles ; Phosphorus ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Analytica Chimica Acta, 2008, Vol.627(2), pp.258-269
    Description: Neurodegenerative diseases like Alzheimer's disease and Parkinson's disease are gaining increasing relevance in our aging society. However, the complex multifactorial mechanisms of these diseases are not sufficiently understood yet. Several studies indicate that metal ions play an important role in the promotion of these diseases. Consequently, the transport pathways of metals and their species to the brain are of special interest. Following oral or inhalative uptake metals are absorbed and distributed via the blood stream in the body. Transport into the brain requires crossing of the neural barriers. Our study focuses on the investigation of the permeability of the blood-cerebrospinal fluid (CSF)-barrier for selected metals (Mn, Fe, Cu, Zn, Mg and Ca). For the first time paired human serum and CSF samples obtained from a neurological department were characterised for total metal concentrations and metal species. For CSF few data are available in the literature on total metal contents and applications of element speciation analysis in CSF samples are rare. In our study mean CSF/serum ratios ( = 29) were 0.7 for Mn, 0.02 for Fe, 0.02 for Cu, 0.03 for Zn, 1.3 for Mg and 0.5 for Ca. Size exclusion chromatography (SEC) online with inductively coupled plasma mass spectrometry was further developed for the size characterisation of the metal species in CSF and serum with limits of detection of 0.4 μg L for Fe, 0.01 μg L for Mn, 0.2 μg L for Cu, 0.2 μg L for Zn, 0.6 μg L for Mg and 3.8 μg L for Ca in the eluate from the HPLC column. Apart from Mn the application of this technique has not been published for metal speciation in CSF, yet. In the case of some Mn species it turned out that methanol, which was contained in the mobile phase of a SEC method previously published from our group on qualitative characterisation of Mn species, was interfering with the quantification. The modified method developed in this work (with NaCl but without methanol in the mobile phase; use of internal standard) allowed reliable quantification. The results clearly indicate changes in the metal species pattern due to different permeation behaviour at the blood-CSF-barrier. As part of the method validation the relative stability of complexes of albumin, transferrin and citrate with Mn, Fe, Cu and Zn was investigated.
    Keywords: Cerebrospinal Fluid ; Serum ; Speciation ; Metal ; Blood-Cerebrospinal Fluid-Barrier ; Chemistry
    ISSN: 0003-2670
    E-ISSN: 1873-4324
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Journal of Trace Elements in Medicine and Biology, January 2017, Vol.39, pp.54-61
    Description: A large number of medicinal plants is traditionally known in Kenya and used for treatment of various diseases, for example diabetes, where metals are supposed to be involved in pathogenesis and therapy. Therefore, detailed investigation of the concentration of a large number of metals in medicinal plants is required for improved understanding and optimisation of the therapeutic role of metals and also to exclude potentially toxic effects. Our study focused on the determination of 30 selected elements in 19 medicinal plant species each collected from 3 sampling locations in Nyamira County, Kenya. The obtained comprehensive data set showed large variability and multivariate data analysis revealed that the differences in the elemental composition were stronger dependent on the plant species than on the sampling location. In addition, hot water extractions were performed to mimic the traditional preparation of medicine from the plants. It was found that the mean extraction efficiencies were below 20% except for B, Mg, P, K, Mn, Co, Ni, Cu, Zn, Rb, Mo, Cd and Tl, which are mostly essential elements apart from Cd and Tl. Sequential (ultra)filtration of the extracts was applied as novel approach for molecular size-fractionation of the extracted elemental species. The results indicate more than 50% low molecular weight species (〈3 kDa) for Mg, Mn, Co, Ni and Zn while predominantly larger size-fractions (〉3 kDa up to 〈5 μm) were detected for V, Cu, Al and Fe.
    Keywords: Inductively Coupled Plasma Mass Spectrometry ; Sequential Filtration ; Medicinal Plants ; Trace Elements ; Hot Water Extraction ; Anatomy & Physiology
    ISSN: 0946-672X
    E-ISSN: 1878-3252
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages