Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Water Research, Oct 15, 2015, Vol.83, p.205(12)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.watres.2015.06.032 Byline: Julia L.A. Knapp, Karsten Osenbruck, Olaf A. Cirpka Abstract: Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates. Author Affiliation: (a) University of Tubingen, Center for Applied Geoscience, Holderlinstr. 12, 72074 Tubingen, Germany (b) Water and Earth System Science (WESS) Competence Cluster, c/o University of Tubingen, Holderlinstr. 12, 72074 Tubingen, Germany Article History: Received 10 March 2015; Revised 13 June 2015; Accepted 19 June 2015
    Keywords: Photosynthesis – Analysis ; Natural Gas – Analysis ; Plant Biochemistry – Analysis ; Tracers (Biology) – Analysis
    ISSN: 0043-1354
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Hydrology, Nov 27, 2014, Vol.519, p.3386(14)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.jhydrol.2014.09.084 Byline: Zijie Liao, Karsten Osenbruck, Olaf A. Cirpka Abstract: * River-to-groundwater travel time distributions change with time. * We determine these distributions from continuous signals of electric conductivity. * Our approach does not prescribe a functional shape of the distributions. * We detrend the data prior to deconvolution. * We enforce non-negativity and smoothness in time and travel-time. Article History: Received 9 May 2014; Revised 22 August 2014; Accepted 29 September 2014 Article Note: (miscellaneous) This manuscript was handled by Peter K. Kitanidis, Editor-in-Chief, with the assistance of Jian Luo, Associate Editor
    Keywords: Electrical Conductivity -- Analysis ; Groundwater -- Analysis ; Rivers -- Analysis
    ISSN: 0022-1694
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Hydrology, 2011, Vol.402(3), pp.274-289
    Description: ► Using multiple isotopes to study groundwater flow in active rifts. ► Hydrochemical and isotopic evolution from escarpments to Rift floor. ► Mantle CO influences groundwater hydrochemistry. ► Apparent C ages are similar in Rift floor groundwater. ► Groundwater flow paths occur both longitudinal and transversal to rift axis. This study aims to investigate groundwater recharge and flow patterns in tectonically active rift systems, exemplified by a case study in the Main Ethiopian Rift. The chosen approach includes the investigation of hydrochemical parameters and environmental isotopes ( H, δ H, δ O, δ C-DIC, C-DIC, Sr/ Sr). Apparent groundwater ages were determined by radiocarbon dating after correction of C-DIC using a modified δ C-mixing model and further validation using geochemical modelling with NETPATH. Hydrochemical and isotopic data indicate an evolutionary trend existing from the escarpments towards the Rift floor. Groundwater evolves from tritium-containing and hence recently recharged Ca–HCO -type water on the escarpments to tritium-free Na–HCO groundwater dominating deep Rift floor aquifers. Correspondingly, rising pH and values coupled with increasingly enriched δ C signatures point to hydrochemical evolution of DIC and beginning dilution of the carbon isotope signature by other carbon sources, related to a diffuse influx of mantle CO into the groundwater system. Especially thermal groundwater sampled near the most recent fault zones in the Fantale/Beseka region displays clear influence of mantle CO and increased water–rock interaction, indicated by a shift in δ C and Sr/ Sr signatures. The calculation of apparent groundwater ages revealed an age increase of deep groundwater from the escarpments to the Rift floor, complying with hydrochemical evolution. Within the Rift, samples show a relatively uniform distribution of apparent C ages of ∼1800 to ∼2800 years, with the expected down-gradient aging trend lacking, contradicting the predominant intra-rift groundwater flow described in existing transect-based models of groundwater flow. By combining hydrochemical and new isotopic data with knowledge of the structural geology of the Rift, we improve the existing groundwater flow model and propose a new conceptual model by identifying flow paths both transversal and longitudinal to the main Rift axis, the latter being strongly controlled by faulted and tilted blocks on the escarpment steps. The connection between groundwater flow and fault direction make this model applicable to other active rift systems with similar structural settings.
    Keywords: Rift Tectonics ; Hydrochemistry ; Isotope Hydrology ; Groundwater Cycle and Dating ; 87sr/ 86sr ; 14c ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Water Research, 15 October 2015, Vol.83, pp.205-216
    Description: Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.
    Keywords: Reaeration ; Gas-Tracer Tests ; Whole-Stream Metabolism ; Dispersion ; Oxygen Balance of Streams ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Hydrology, 27 November 2014, Vol.519, pp.3386-3399
    Description: The travel-time distribution between rivers and groundwater observation points and the mixing of freshly infiltrated river water with groundwater of other origin is of high relevance in riverbank filtration. These characteristics usually are inferred from the analysis of natural-tracer time series, typically relying on a stationary input–output relationship. However, non-stationarity is a significant feature of the riparian zone causing time-varying river-to-groundwater transfer functions. We present a non-stationary extension of nonparametric deconvolution by performing stationary deconvolution with windowed time series, enforcing smoothness of the determined transfer function in time and travel time. The nonparametric approach facilitates the identification of unconventional features in travel-time distributions, such as broad peaks, and the sliding-window approach is an easy way to accommodate the method to dynamic changes of the system under consideration. By this, we obtain time-varying signal-recovery rates and travel-time distributions, from which we derive the mean travel time and the spread of the distribution as function of time. We apply our method to electric-conductivity data collected at River Thur, Switzerland, and adjacent piezometers. The non-stationary approach reproduces the groundwater observations significantly better than the stationary one, both in terms of overall metrics and in matching individual peaks. We compare characteristics of the transient transfer function to base flow which indicates shorter travel times at higher river stages.
    Keywords: Travel-Time Distribution ; Bank Filtration ; Non-Stationarity ; Nonparametric Inference ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Geochimica et Cosmochimica Acta, 2009, Vol.73(4), pp.911-922
    Description: Groundwater is an important and often exclusive water resource in arid and semi-arid regions. The aim of the present paper was to gain insight into the processes and conditions that control the deterioration of groundwater quality in the semi-arid Kalahari of Botswana. Measurements of He, He, Ne, Ne, and of C of dissolved inorganic carbon (DIC) were combined with existing isotopic and hydrochemical data to investigate groundwater from the Ntane Sandstone Aquifer, which is affected by high nitrate concentrations of non-anthropogenic origin. All groundwater samples revealed neon concentrations in excess to air-saturated water, which we attributed to the addition of excess air during recharge. Neon concentrations ranged from values close to air saturation for C DIC rich samples (up to 80.5%MC) up to values of 90% in excess to air-saturated water for lower C DIC contents (2.6–61.3%MC). A strong linear correlation of excess Ne with nitrate concentrations suggests an intimate connection between groundwater quality and the processes and conditions during groundwater recharge. Low groundwater recharge rates under present-day semi-arid conditions are associated with low amounts of excess Ne and elevated nitrate concentrations. In contrast to this, higher excess Ne values in groundwater of lower C DIC and nitrate contents indicate that the high quality groundwater end-member presumably is related to higher groundwater table fluctuations during wetter climatic conditions in the past. We attribute the decline in groundwater quality with respect to nitrate to a decreasing rate and temporal variability of groundwater recharge, and to concurrent changes in biogeochemical activities following a transition to a drier climate during the Holocene. Under such conditions, a much stronger decrease in groundwater recharge compared to the release of nitrate from soil organic matter may result in elevated nitrate concentrations in the vadose zone and groundwater. This implies a strong impact of climate change on the transport of solutes like nitrate through the vadose zone which needs to be considered in predictions of future groundwater quality.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Science of the Total Environment, 2008, Vol.398(1), pp.164-174
    Description: Seven years of monitoring groundwater in the Gaza Strip has shown that nitrate was and still is a major groundwater pollutant. The objectives of this research were to study the distribution of NO in the groundwater of the Gaza Strip and to identify the sources of NO in the Gaza aquifer system by assessing nitrogen and oxygen isotopes. The most recent samples collected in 2007 showed 90% of the wells having NO concentrations that are several times higher than the WHO standards of 50 mg/L. Potential NO source materials in Gaza are animal manure N, synthetic NH based fertilizers, and wastewater/sludge. The average concentrations of N in the sludge, manure and soil of Gaza were 2.9%, 1% and 0.08%, respectively. The range in N of solid manure samples was + 7.5 to + 11.9‰. The range in N of sludge samples was + 4.6 to + 7.4‰, while four brands of synthetic fertilizers commonly used in Gaza had N ranging from + 0.2 to + 1.0‰. Sludge amended soil had N ranging from + 2.0 to + 7.3‰. For both O and N, the ranges of groundwater NO were − 0.1 to + 9.3‰ and + 3.2 to 12.8‰, respectively. No significant bacterial denitrification is taking place in the Gaza Strip aquifer. Nitrate was predominantly derived from manure and, provided N of sludge represents the maximum N of human waste, to a lesser extent from septic effluents/sludge. Synthetic fertilizers were a minor source.
    Keywords: Gaza Strip ; Nitrate ; Nitrogen/Oxygen Isotopes ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Hydrology Research, 11/2013, Vol.44(6), p.995
    Description: This study uses a high-frequency discharge and nitrate concentration dataset from the Weida catchment in Germany for the catchment scale hydrologic response analysis. Nitrate transport in the catchment is mostly conservative as indicated by the nitrate stable isotope ( delta 15N and delta 18O) analysis. Discharge-nitrate concentration data from the catchment show distinctive patterns, suggesting flushing and dilution response. A self-organizing feature map-based methodology was employed to identify such patterns or cluster in the datasets. Based on knowledge of the catchment conditions and prevailing understanding of discharge-nitrate concentration relationship, the clusters were characterized into five qualitative flow responses: (1) baseflow; (2) subsurface flow increase; (3) surface runoff increase; (4) surface runoff recession; and (5) subsurface flow decrease. Such qualitative flowpaths were used as soft data for a multi-objective calibration of a hydrological model (WaSiM-ETH). The calibration led to a reasonable simulation of overall discharge (Nash-Sutcliffe coefficient: 0.84) and qualitative flowpaths (76% agreement). A prerequisite for using such methodology is limited biogeochemical transformation of nitrate (such as denitrification).
    Keywords: Catchment Area ; Biogeochemistry ; Denitrification ; River Discharge ; Hydrology ; Nitrogen Isotopes ; Oxygen Isotope Ratio ; Runoff ; Response Analysis ; Oxygen Isotopes ; Hydrologic Analysis ; Nitrate Transport ; Numerical Simulations ; Catchment Basins ; Base Flow ; Surface Runoff ; Nitrogen Isotopes ; Subsurface Flow ; Isotopes ; Nitrates ; Biogeochemistry ; Denitrification ; Catchments ; Simulation ; Hydrology ; Hydrologic Models ; Assessments ; Surface Runoff ; Calibrations ; Nitrates ; Denitrification ; Catchment Areas ; Storm Seepage ; Hydrologic Data ; Hydrologic Models ; Assessments ; Surface Runoff ; Calibrations ; Nitrates ; Denitrification ; Catchment Areas ; Storm Seepage ; Hydrologic Data ; Germany ; Freshwater ; Identification of Pollutants ; Sewage ; General (556) ; General ; General ; Cluster Analysis ; Discharge-Nitrate Concentration Relationship ; Hydrological Flowpaths ; Model Calibration ; Nitrate Stable Isotopes ; Self-Organizing Feature Maps;
    ISSN: 0029-1277
    ISSN: 19989563
    E-ISSN: 22247955
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages