Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Nature, 03 December 2015, Vol.528(7580), pp.93-8
    Description: Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.
    Keywords: Astrocytoma -- Pathology ; Brain Neoplasms -- Pathology ; Gap Junctions -- Metabolism
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Cancer Research, 04/15/2013, Vol.73(8 Supplement), pp.3916-3916
    ISSN: 0008-5472
    E-ISSN: 1538-7445
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States, Sept 3, 2013, Vol.110(36), p.14735(6)
    Description: Disruption of the blood--brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase C[beta], which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase C[beta] in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. EAE | enzastaurin | CNS www.pnas.org/cgi/doi/10.1073/pnas.1302569110
    Keywords: Protein Kinases -- Physiological Aspects ; Protein Kinases -- Health Aspects ; Blood-brain Barrier -- Physiological Aspects ; Blood-brain Barrier -- Health Aspects ; Encephalomyelitis -- Physiological Aspects
    ISSN: 0027-8424
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 07 January 2014, Vol.111(1), pp.409-14
    Description: A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.
    Keywords: Drug Resistance, Neoplasm ; Gene Expression Regulation, Neoplastic ; Antineoplastic Agents, Alkylating -- Pharmacology ; Brain Neoplasms -- Drug Therapy ; Cell Cycle Proteins -- Metabolism ; Glioblastoma -- Drug Therapy ; Glioma -- Drug Therapy ; Intracellular Signaling Peptides and Proteins -- Metabolism ; O(6)-Methylguanine-DNA Methyltransferase -- Pharmacology ; Tor Serine-Threonine Kinases -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Cancer Research, 04/15/2013, Vol.73(8 Supplement), pp.403-403
    ISSN: 0008-5472
    E-ISSN: 1538-7445
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, 2014
    Description: Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas (1-3) and other types of tumour (4-6). They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG) (7,8), genomic hypermethylation (9-11), genetic instability and malignant transformation (12). More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells (13,14). Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific [CD4.sup.+] T-helper-1 ([T.sub.H]1) responses. [CD4.sup.+] [T.sub.H]1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a [CD4.sup.+] T-cell-dependent manner. As IDH1(R132H) is presentin all tumour cells of these slow-growing gliomas (15), a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.
    Keywords: Gene Mutation -- Identification And Classification ; Drug Targeting -- Research ; Gliomas -- Care And Treatment ; Gliomas -- Development And Progression ; Oxidoreductases -- Health Aspects ; Immune Response -- Research ; Cancer Research;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Cell and Tissue Research, 2013, Vol.352(1), pp.149-159
    Description: A complex and reciprocal communication of cells with each other and with relevant parts of the tissue stroma governs many biological processes in both health and disease. However, in the past, the study of these anatomical and molecular interactions has suffered from a lack of appropriate experimental models. An imaging methodology aimed at changing this should allow intravital display and quantification in an intact non-traumatized organ, imaging over a wide range of time spans including extended periods (i.e., months), many repetitive measurements of the same cell or area to permit the study of the cause and consequence of biological processes, the display of various cell types and their reciprocal interaction with each other in three dimensions, the co-registration of relevant physiological parameters and reporters for selected molecular pathways and as high as possible resolution to visualize sub-cellular structures such as organelles. Remarkably, intravital multiphoton microscopy (in vivo MPLSM) through a chronic cranial window allows us to do all these things, making the brain the inner organ of choice for this technology. Here, we give an overview of the application of in vivo MPLSM to study the choreography of cellular, vascular and molecular interactions in the healthy brain and in neurological diseases. We focus on brain tumor formation, progression and response to therapies. This review further aims at demonstrating that we stand at the beginning of full exploitation of the opportunities provided by this technology and gives clues to future directions that appear most promising.
    Keywords: Multiphoton microscopy ; Two-photon microscopy ; Cancer ; Neuroscience ; Brain
    ISSN: 0302-766X
    E-ISSN: 1432-0878
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Seminars in Neurology, 2018, Vol.38(01)
    In: Seminars in Neurology, 2018, Vol.38(01), pp.112-120
    Description: The majority of meningiomas, the most common primary brain tumor, are considered to be benign, and characteristic magnetic resonance imaging features allow a preliminary diagnosis. Meningiomas can be classified in the World Health Organization system as grade I, II, or III, depending on various histological features. In many cases, observation is the preferred management option, although this means the absence of a histological diagnosis. If necessary, standard therapy consists of surgery with or without adjuvant radiation, depending on the tumor grade and the degree of resection. To date, systemic therapies are not included in the standard of care. The level of evidence for treatment recommendations is low, and effective treatment regimens, especially for surgery-refractory and radiation-refractory meningiomas, are still very limited. Recent studies have broadened our knowledge of the genetics and pathogenesis of meningiomas and will lead to new therapeutic options. This review summarizes the epidemiology, pathogenesis and genetics, classification, and diagnosis of meningiomas, as well as management principles, including promising new avenues of therapy.
    Keywords: Meningioma ; Brain tumor ; Treatment
    ISSN: 0271-8235
    E-ISSN: 1098-9021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 03 September 2013, Vol.110(36), pp.14735-40
    Description: Disruption of the blood-brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS.
    Keywords: CNS ; Eae ; Enzastaurin ; Blood-Brain Barrier -- Drug Effects ; Encephalomyelitis, Autoimmune, Experimental -- Prevention & Control ; Indoles -- Pharmacology ; Protein Kinase C Beta -- Antagonists & Inhibitors
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: BMC Cancer, April 12, 2011, Vol.11, p.127
    Description: Background Peritumoral edema is a characteristic feature of malignant glioma related to the extent of neovascularisation and to vascular endothelial growth factor (VEGF) expression. The extent of peritumoral edema and VEGF expression may be prognostic for patients with glioblastoma. As older age is a negative prognostic marker and as VEGF expression is reported to be increased in primary glioblastoma of older patients, age-related differences in the extent of peritumoral edema have been assessed. Methods In a retrospective, single-center study, preoperative magnetic resonance imaging (MRI) scans of steroid-na#239;ve patients (n = 122) of all age groups were analysed. Patients with clinically suspected, radiologically likely or known evidence of secondary glioblastoma were not included. Extent of brain edema was determined in a metric quantitative fashion and in a categorical fashion in relation to tumor size. Analysis was done group-wise related to age. Additionally, tumor size, degree of necrosis, superficial or deep location of tumor and anatomic localization in the brain were recorded. Results The extent of peritumoral edema in patients 〉65 years (ys) was not different from the edema extent in patients [less than or equal to] 65 ys (p = 0.261). The same was true if age groups [less than or equal to] 55 ys and [greater than or equal to] 70 ys were compared (p = 0.308). However, extent of necrosis (p = 0.023), deep tumor localization (p = 0.02) and frontal localisation (p = 0.016) of the tumor were associated with the extent of edema. Tumor size was not linearly correlated to edema extent (Pearson F = 0.094, p = 0.303) but correlated to degree of necrosis (F = 0.355, p [less than] 0.001, Spearman-Rho) and depth of tumor (p [less than] 0.001). In a multifactorial analysis of maximum edema with the uncorrelated factors age, regional location of tumor and degree of necrosis, only the extent of necrosis (p = 0.022) had a significant effect. Conclusion Age at diagnosis does not determine degree of peritumoral edema, and tumor localization in the white matter is associated with greater extent of edema. The area of necrosis is reflective of volume of edema. In summary, the radiographic appearance of a glioblastoma at diagnosis does not reflect biology in the elderly patient.
    Keywords: Disease Age Factors -- Research ; Glioblastomas -- Prognosis ; Glioblastomas -- Demographic Aspects ; Glioblastomas -- Research ; Edema -- Distribution ; Edema -- Demographic Aspects ; Edema -- Patient Outcomes ; Edema -- Research ; Vascular Endothelial Growth Factor -- Physiological Aspects ; Vascular Endothelial Growth Factor -- Research ; Magnetic Resonance Imaging -- Research
    ISSN: 1471-2407
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages