Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Critical care (London, England), 2011, Vol.15(1), pp.R20
    Description: Deregulated apoptosis and overshooting neutrophil functions contribute to immune and organ dysfunction in sepsis and multiple organ failure (MOF). In the present study, we determined the role of soluble Fas (sFas) in the regulation of posttraumatic neutrophil extrinsic apoptosis and the development of sepsis. Forty-seven major trauma patients, 18 with and 29 without sepsis development during the first 10 days after trauma, were enrolled in this prospective study. Seventeen healthy volunteers served as controls. Blood samples from severely injured patients were analyzed at day 1, day 5 and day 9 after major trauma. sFas levels, plasma levels of neutrophil elastase (PMNE) and levels of interleukin (IL)-6 were quantified by enzyme-linked immunosorbent assay and related to patients' Sequential Organ Failure Assessment (SOFA) score and Multiple Organ Dysfunction Score (MODS). Neutrophil apoptosis was determined by propidium iodide staining of fragmented DNA and flow cytometry. sFas-mediated effects on neutrophil apoptosis were investigated in cells cultured with agonistic anti-Fas antibodies in the presence of recombinant sFas, sFas-depleted serum or untreated serum from septic patients. Serum levels of sFas in patients who later developed sepsis were significantly increased at day 5 (P 〈 0.01) and day 9 (P 〈 0.05) after trauma compared with patients with uneventful recovery. Apoptosis of patient neutrophils was significantly decreased during the observation period compared with control cells. Moreover, Fas-mediated apoptosis of control neutrophils was efficiently inhibited by recombinant sFas and serum from septic patients. Depletion of sFas from septic patient sera diminished the antiapoptotic effects. In septic patients, sFas levels were positively correlated with SOFA at day 1 (r = 0.7, P 〈 0.001), day 5 (r = 0.62, P 〈 0.01) and day 9 (r = 0.58, P 〈 0.01) and with PMNE and leukocyte counts (r = 0.49, P 〈 0.05 for both) as well as MODS at day 5 (r = 0.56, P 〈 0.01) after trauma. Increased sFas in patients with sepsis development impairs neutrophil extrinsic apoptosis and shows a positive correlation with the organ dysfunction scores and PMNE. Therefore, sFas might be a therapeutic target to prevent posttrauma hyperinflammation and sepsis.
    Keywords: Apoptosis -- Physiology ; Fas Ligand Protein -- Blood ; Neutrophils -- Physiology ; Sepsis -- Etiology ; Wounds and Injuries -- Blood
    ISSN: 13648535
    E-ISSN: 1466-609X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: PLoS ONE, 2016, Vol.11(8)
    Description: Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1–2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma.
    Keywords: Research Article ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 01 January 2017, Vol.12(5), p.e0177450
    Description: Excessive neutrophil activation accompanied by delayed apoptotic cell death in inflammatory conditions causes progressive damage of cells and tissues, leading to life-threatening multiple organ dysfunction syndrome. Previous work suggested that circulating serum factors during inflammation are critically involved in the suppression of neutrophil cell death although the identity of these antiapoptotic mediators remained elusive. In this study, we identified the acute phase protein α-1 Antitrypsin (AAT) as a potent suppressor of staurosporine (STS)-induced apoptosis in human neutrophils through a mechanism implicating caspases-independent pathways. We show here that serum levels of AAT, potentially in part released by stimulated neutrophils, are markedly elevated in major trauma patients suffering from systemic inflammatory response syndrome (SIRS). Notably, AAT depletion from serum increased sensitivity of human neutrophils for STS-induced cell death. In fact, AAT was demonstrated to confer intrinsic apoptosis resistance by preventing PKC/Akt inactivation and subsequent proteasomal degradation of antiapoptotic Mcl-1 protein in response to STS treatment. Neither MAP kinase ERK1/2 nor caspases were found to be involved in AAT-triggered antiapoptotic pathways in neutrophils. In summary, these results establish a novel pivotal role of circulating AAT in mediating survival by antagonizing the proapoptotic action of the PKC inhibitor STS and should be considered for AAT augmentation therapies in future.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(11), p.e111485
    Description: The inhalation of combustion-derived nanoparticles leads to adverse health effects in the airways. In this context the induction of membrane-coupled signalling is considered as causative for changes in tissue homeostasis and pro-inflammatory reactions. The identification of these molecular cell reactions allowed to seek for strategies which interfere with these adverse effects. In the current study, we investigated the structurally different compatible solutes mannosylglycerate (firoin) from thermophilic bacteria and ectoine from halophilic bacteria for their capability to reduce signalling pathways triggered by carbon nanoparticles in target cells in the lung. The pre-treatment of lung epithelial cells with both substances decreased the particle-specific activation of mitogen-activated protein kinases and also the endpoints proliferation and apoptosis. Firoin applied into the lungs of animals, like ectoine, led to a significant reduction of the neutrophilic lung inflammation induced by particle exposure. The pro-inflammatory effect of carbon nanoparticles on human neutrophil granulocytes ex vivo was significantly reduced by both substances via the reduction of the anti-apoptotic membrane-dependent signalling. The data of this study together with earlier studies demonstrate that two structurally non-related compatible solutes are able to prevent pathogenic reactions of the airways to carbon nanoparticles by interfering with signalling events. The findings highlight the preventive or therapeutic potential of compatible solutes for adverse health effects caused by particle exposure of the airways.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: The Thoracic and Cardiovascular Surgeon, 2018, Vol.66
    In: The Thoracic and Cardiovascular Surgeon, 2018, Vol.66, pp.S1-S110
    Keywords: Sunday, February 18, 2018
    ISSN: 0946-4778
    ISSN: 01716425
    E-ISSN: 0946-4778
    E-ISSN: 14391902
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Molecular medicine (Cambridge, Mass.), 09 May 2012, Vol.18, pp.325-35
    Description: Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. The expression of the antiapoptotic Bcl-2 protein members A1 and Mcl-1 were found to be diminished in the septic patients at d 5 and d 10 after trauma. This decrease was also linked to an impaired intrinsic apoptosis resistance, which has been previously shown to occur in neutrophils during systemic inflammation. In patients with sepsis development, delayed neutrophil apoptosis was found to be associated with a disturbed extrinsic pathway, as demonstrated by reduced caspase-8 activity and Bid truncation. Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.
    Keywords: Apoptosis -- Physiology ; Multiple Trauma -- Metabolism ; Neutrophils -- Metabolism ; Sepsis -- Metabolism
    ISSN: 10761551
    E-ISSN: 1528-3658
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Stem Cell Research & Therapy, 01 October 2018, Vol.9(1), pp.1-17
    Description: Abstract Background During the last decade, mesenchymal stem cells (MSCs) have gained much attention in the field of regenerative medicine due to their capacity to differentiate into different cell types and to promote immunosuppressive effects....
    Keywords: Mesenchymal Stem Cells ; Macrophage Polarization ; Il-6 ; Preconditioning ; Immunosuppression ; Biology
    E-ISSN: 1757-6512
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Histochemistry and Cell Biology, 2011, Vol.135(5), pp.461-473
    Description: Although expression of trefoil factor family (TFF) peptides has been reported in the brain, nothing is known about TFF expression in the retina. The aim of this study was to test whether TFF peptides are expressed in the murine retina and have any function here. In contrast to most tissues studied, where TFF1 and TFF3 are the predominant peptides, TFF2 is the only peptide expressed in the murine retina. Immunohistochemical studies on murine retinal sections indicate that cells of the ganglion cell layer are the retinal source for murine TFF2 (Tff2). In organotypic murine retina cell cultures recombinant TFF2 exerted a strong pro-apoptotic and pro-proliferative rather than an anti-apoptotic and anti-proliferating effect described in most human cancer cell lines investigated so far. In blockage experiments we were able to demonstrate that the pro-apoptotic effect of TFF2 is caspase-dependent. Western blot analysis of TFF2 treated retinal wholemount homogenates revealed significant reductions in the phosphorylation level of ERK and STAT3 proteins compared to basal conditions, suggesting that in the developing murine retina survival mechanism are down-regulated upon TFF2 administration. Our results suggest that during retinal cell death periods, requiring a tightly regulated balance between cell survival and cell death, TFF2 acts pro-proliferative and pro-apoptotic at least in developing mouse retinae cultured in vivo.
    Keywords: TFF peptide ; Trefoil factors ; Apoptosis ; Cell death ; Spasmolytic polypeptide
    ISSN: 0948-6143
    E-ISSN: 1432-119X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Immunobiology, 2011, Vol.216(3), pp.334-342
    Description: Posttrauma apoptosis resistance of neutrophils (PMN) is related to overshooting immune responses, systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF). Recently, we have shown that the apoptosis resistance in circulating PMN from severely injured patients which is known to be mediated by high serum levels of pro-inflammatory cytokines can be overcome by the activation of Fas death receptor. Here, we aimed to study whether stimulation of surface Fas leads to the inactivation of hyperactivated PMN from critically ill patients with SIRS. PMN from 23 multiple trauma patients (mean injury severity score (ISS) 34 ± 1.9) were isolated at day 1 after admission to the trauma center. PMN from 17 volunteer blood donors served as controls. Neutrophil activity has been determined after short (1 h) and long-term (4 h) stimulation of freshly isolated PMN with immobilized agonistic anti-Fas antibodies. We found neutrophil chemotactic migration in response to IL-8, phagocytosis and oxidative burst to be significantly inhibited in control cells already after short-term (1 h) Fas stimulation. In contrast, inactivation of trauma PMN by agonistic anti-Fas antibodies was found to be efficient only after long-term (4 h) incubation of cells with agonistic antibodies. Thus, in trauma PMN down-regulation of neutrophil activity seems to be delayed when compared to cells isolated from healthy controls, suggesting impaired susceptibility for Fas stimulation in these cells. Interestingly, whereas Fas-mediated inhibition of phagocytosis and oxidative burst could be prevented by the broad range caspase inhibitor t-butoxycarbonyl-aspartyl(O-methyl)-fluoromethyl ketone (BocD-fmk), the chemotactic activity in response to IL-8 was unaffected. In conclusion, we demonstrate that stimulation of neutrophil Fas does not only initiate apoptosis but also induces inhibition of neutrophil functions, partially by non-apoptotic signaling.
    Keywords: Caspases ; Chemotaxis ; Neutrophils ; Oxidative Burst ; Phagocytosis ; Sirs ; Biology
    ISSN: 0171-2985
    E-ISSN: 1878-3279
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Mediators of Inflammation, 01 January 2012, Vol.2012
    Description: Introduction. Neutrophil extracellular traps (NET) consist of a DNA scaffold that can be destroyed by Deoxyribonuclease (DNase). Thus DNases are potential prerequisites for natural counter regulation of NETs formation. In the present study, we determined the relationship of NETs and DNase after major trauma. Methods. Thirty-nine major trauma patients, 14 with and 25 without sepsis development were enrolled in this prospective study. Levels of cell-free (cf)-DNA/NETs and DNase were quantified daily from admission until day 9 after admission. Results. Levels of cf-DNA/NETs in patients who developed sepsis were significantly increased after trauma. In the early septic phase, DNase values in septic patients were significantly increased compared to patients without sepsis (P〈0.05). cf-DNA/NETs values correlated to values of DNase in all trauma patients and patients with uneventful recovery (P〈0.01) but not in septic patients. Recombinant DNase efficiently degraded NETs released by stimulated neutrophils in a concentration-dependent manner in vitro. Conclusions. DNase degrades NETs in a concentration-dependent manner and therefore could have a potential regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients.
    Keywords: Medicine
    ISSN: 0962-9351
    E-ISSN: 1466-1861
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages