Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    kobvindex_GFZ91713
    Format: XVI, 416 Seiten , Illustrationen
    ISBN: 0126312605
    Note: MAB0014.001: PIK N 531-01-0416 , MAB0014.002: AWI G1-02-0031 , Contents: Contributors. - Foreword by Paul J. Crutzen. - Preface by David Schimel. - Introduction. - 1 Uncertainties of Global Biogeochemical Predictions / E. D. Schulze, D. S. S. Schimel. - 1.1 Introduction. - 1.2 The IGBP Transect Approach. - 1.2.1 The Patagonian Transect. - 1.2.2 The Australian Transect. - 1.2.3 The European Transect. - 1.3 Variability in Processes. - 1.4 Biome Approach and Functional Types. - 1.5 New Approaches to Functional Diversity. - 1.6 Conclusions. - References. - 2 Uncertainties of Global Climate Predictions / L. Bengtsson. - 2.1 Introduction. - 2.2 Observational Evidence. - 2.3 Physical Rationale. - 2.3.1 Stochastic Forcing. - 2.3.2 Solar irradiation Changes. - 2.3.3 Volcanic Effects. - 2.3.4 Anthropogenic Effects. - 2.4 Response to Forcing of the Climate System. - 2.5 Results from Climate Change Prediction Experiments. - 2.6 Summary and Conclusions. - References. - 3 Uncertainties in the Atmospheric Chemical System / G. P. Brasseur, E. A. H. Holland. - 3.1 Introduction. - 3.2 Synthetic View of Chemical Processes in the Troposphere. - 3.3 The IMAGES Model. - 3.4 Changes in the Chemical Composition of the Global Troposphere. - 3.5 Concluding Remarks. - References. - 4 Inferring Biogeochemical Sources and Sinks from Atmospheric Concentrations: General Consideration and Applications in Vegetation Canopies / M. Raupach. - 4.1 Introduction. - 4.2 Scalar and Isotopic Molar Balances. - 4.2.1 General Principles. - 4.2.2 Single-Point Eulerian Equations. - 4.2.3 Source Terms for CO2. - 4.2.4 Single-Point Lagrangian Equations. - 4.3 Inverse Methods for Inferring Scalar Sources and Sinks in Canopies. - 4.3.1 General Principles. - 4.3.2 Localized Near Field Theory. - 4.3.3 The Dispersion Matrix. - 4.3.4 Turbulent Velocity Field. - 4.3.5 Solutions for Forward, Inverse and Implicit Problems. - 4.3.6 Field Tests. - 4.4 Inverse Methods and Isotopes in Canopies. - 4.4.1 Path Integrals and Keeling Plots. - 4.4.2 Inverse Lagrangian Analysis of Isotopic Composition. - 4.5 Summary and Conclusions. - Appendix A. - Appendix B. - References. - 5 Biogeophysical Feedbacks and the Dynamics of Climate / M. Claussen. - 5.1 Introduction. - 5.2 Synergisms. - 5.2.1 High Northern Latitudes. - 5.2.2 Subtropics. - 5.3 Multiple Equilibria. - 5.4 Transient Interaction. - 5.5 Perspectives. - References. - 6 Land-Ocean-Atmosphere Interactions and Monsoon Climate Change: A Paleo-Perspective / J. E. Kutzbach, Michael T. Coe, S. P. Harrison and M. T. Coe. - 6.1 Introduction. - 6.2 Response of the Monsoon to Orbital Forcing. - 6.3 Ocean Feedbacks on the Monsoon. - 6.4 Land-Surface Feedbacks on the Monsoon. - 6.5 Synergies between the Land, Ocean and Atmosphere. - 6.6 The Role of Climate Variability. - 6.7 Final Remarks. - References. - 7 Paleobiogeochemistry / I. C. Prentice, D. Raynaud. - 7.1 Introduction. - 7.2 Methane. - 7.3 Carbon Dioxide. - 7.4 Mineral Dust Aerosol. - 7.5 Scientific Challenges Posed by the Ice-Core Records. - 7.5.1 Methane. - 7.5.2 Carbon Dioxide. - 7.5.3 Mineral Dust Aerosol. - 7.6 Towards an Integrated Research Strategy for Palaeobiogeochemistry. - References. - 8 Should Phosphorus Availability Be Constraining Moist Tropical Forest Responses to Increasing CO2 Concentrations / J. Lloyd, M. I. Bird, E. M. Veenendaal and B. Kruijt. - 8.1 Introduction. - 8.2 Phosphorus in the Soils of the Moist Tropics. - 8.2.1 Soil Organic Phosphorus. - 8.2.2 Soil Inorganic Phosphorus. - 8.2.3 Soil Carbon/Phosphorus Interactions. - 8.3 States and Fluxes of Phosphorus in Moist Tropical Forests. - 8.3.1 Inputs and Losses of Phosphorus Through Rainfall, Dry Deposition and Weathering: Losses Via Leaching. - 8.3.2 Internal Phosphorus Flows in Moist Tropical Forests. - 8.3.3 Mechanisms for Enhanced Phosphorus Uptake in Low P Soils. - 8.4 Linking the Phosphorus and Carbon Cycles. - 8.4.1 To What Extent Does Phosphorus Availability Really Limit Moist Tropical Forest Productivity?. - 8.4.2 Tropical Plant Responses to Increases in Atmospheric CO2 Concentrations. - 8.4.3 Using a Simple Model to Examine CO2/Phosphorus Interactions in Tropical Forests. - References. - 9 Trees in Grasslands: Biogeochemical Consequences of Woody Plant Expansion / S. Archer, T. W. Boutton and K. A. Hibbard. - 9.1 Introduction. - 9.2 Woody Plant Encroachment in Grasslands and Savannas. - 9.3 The La Copita Case Study. - 9.3.1 Biogeographical and Historal Context. - 9.3.2 Herbaceous Retrogression and Soil Carbon Losses. - 9.3.3 Woody Plant Encroachment and Ecosystem Biogeochemistry. - 9.4 Degradation: Ecological Versus Socioeconomic. - 9.5 Implications for Ecosystem and Natural Resources Management. - 9.6 Summary. - References. - 10 Biogeochemistry in the Arctic: Patterns, Processes and Controls / S. Jonasson, F.S. Chapin, III and G. R. Shaver. - 10.1 Introduction. - 10.2 Tundra Organic Matter. - 10.2.1 Distribution of Organic Matter. - 10.2.2 Patterns and Controls of Organic Matter Turnover between Ecosystem Types. - 10.3 Tundra Nutrients. - 10.3.1 Nutrient Distribution and Controls of Nutrient Cycling. - 10.3.2 Nutrient Mineralization and Plant Nutrient Uptake. - 10.3.3 Are there Unaccounted Plant Sources of Limiting Nutrients?. - 10.4 Biogeochemical Responses to Experimental Ecosystem Manipulations. - 10.4.1 Applicability of Experimental Manipulations. - 10.4.2 Responses to Water Applications. - 10.4.3 Response to Nutrient Addition and Warming. - 10.4.4 Responses in Ecosystem Carbon Balance. - 10.5 Summary. - References. - 11 Evaporation in the Boreal Zone During Summer - Physics and Vegetation / F. M. Kelliher, I. Lloyd, C. Rebmann, C. Wirth and E. D. Schulze, D. D. Baldocchi. - 11.1 Introduction. - 11.2 Climate and Soil Water. - 11.3 Evaporation Theory. - 11.4 Evaporation During Summer and Rainfall. - 11.5 Forest Evaporation, Tree Life Form and Nitrogen. - 11.6 Conclusions. - References. - 12 Past and Future Forest Response to Rapid Climate Change / M.B. Davis. - 12.1 Introduction. - 12.2 Long-Distance Dispersal. - 12.3 Estimating Jump Distances. - 12.4 Interactions with Resident Vegetation - Constraints on Establishment. - 12.5 Interactions with Resident Vegetation - Competition for Light and Resulting Constraints on Population Growth. - 12.6 Conclusions. - References. - 13 Biogeochemical Models: Implicit vs. Explicit Microbiology / J. Schimel. - 13.1 Introduction. - 13.2 Microbiology in Biogeochemical Models. - 13.3 Dealing with Microbial Diversity in Models. - 13.4 Kinetic Effects of Microbial Population Size. - 13.5 Microbial Recovery from Stress. - 13.6 Conclusions. - References. - 14 The Global Soil Organic Carbon Pool / M. I. Bird, H. Santruckova, J. Lloyd and E. M. Veenendaal. - 14.1 Introduction: the Soil Carbon Pool and Global Change. - 14.2 Factors Affecting the Distribution of Soil Organic Carbon. - 14.3 Global Variations in the SOC Pool. - 14.4 The Limitations of Available Observational SOC Data. - 14.5 A Stratified Sampling Approach. - 14.6 Conclusions: Sandworld and Clayworld. - References. - 15 Plant Compounds and Their Turnover and Stability as Soil Organic Matter / G. Gleixner, C. Czimczik, C. Kramer, B. M. Lühker and M. W. I. Schmidt. - 15.1 Introduction. - 15.2 Pathways of Soil Organic Matter Formation. - 15.2.1 Formation and Decomposition of Biomass. - 15.2.2 The Influence of Environmental Conditions on SOM Formation. - 15.2.3 For
    Language: English
    Keywords: Aufsatzsammlung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages