Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    Description: Epithelial cells have separate apical and basolateral plasma membrane domains with distinct compositions. After delivery to one surface, proteins can be endocytosed and then recycled, degraded or transcytosed to the opposite surface. Proper sorting into the transcytotic pathway is essential for maintaining polarity, as most proteins are endocytosed many times during their lifespan(1). The polymeric immunoglobulin receptor (pIgR) transcytoses polymeric IgA (pIgA) from the basolateral to the apical surface of epithelial cells and hepatocytes(2,3). However, the molecular machinery that controls polarized sorting of pIgR-pIgA and other receptors is only partially understood. The retromer is a multimeric protein complex, originally described in yeast, which mediates intracellular sorting of Vps10p, a receptor that transports vacuolar enzymes(4). The yeast retromer contains two sub-complexes. One includes the Vps5p and Vps17p subunits, which provide mechanical force for vesicle budding(5,6). The other is the Vps35p-Vps29p-Vps26p subcomplex, which provides cargo specificity(7). The mammalian retromer binds to the mannose 6-phosphate receptor, which sorts lysosomal enzymes from the trans-Golgi network to the lysosomal pathway(8,9). Here, we show a function for the mammalian Vps35-Vps29-Vps26 retromer subcomplex in promoting pIgR-pIgA transcytosis.
    Source: eScholarship
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Cell Biology, 2004, Vol.6(8), p.763
    Description: Epithelial cells have separate apical and basolateral plasma membrane domains with distinct compositions. After delivery to one surface, proteins can be endocytosed and then recycled, degraded or transcytosed to the opposite surface. Proper sorting into the transcytotic pathway is essential for maintaining polarity, as most proteins are endocytosed many times during their lifespan. The polymeric immunoglobulin receptor (pIgR) transcytoses polymeric IgA (pIgA) from the basolateral to the apical surface of epithelial cells and hepatocytes. However, the molecular machinery that controls polarized sorting of pIgR-pIgA and other receptors is only partially understood. The retromer is a multimeric protein complex, originally described in yeast, which mediates intracellular sorting of Vps10p, a receptor that transports vacuolar enzymes. The yeast retromer contains two sub-complexes. One includes the Vps5p and Vps17p subunits, which provide mechanical force for vesicle budding. The other is the Vps35p-Vps29p-Vps26p subcomplex, which provides cargo specificity. The mammalian retromer binds to the mannose 6-phosphate receptor, which sorts lysosomal enzymes from the trans-Golgi network to the lysosomal pathway. Here, we show a function for the mammalian Vps35-Vps29-Vps26 retromer subcomplex in promoting pIgR-pIgA transcytosis.
    Keywords: Immunoglobulin Receptors ; Epithelial Cells ; Mannose ; Immunoglobulin A ; Vesicles ; Hepatocytes ; Lysosomal Enzymes ; Protein Transport ; Antibody: Structure and Function;
    ISSN: 1465-7392
    E-ISSN: 14764679
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Biomedical & Environmental Mass Spectrometry, November 1990, Vol.19(11), pp.731-745
    Description: A structural model is proposed for the surface glycolipids, or lipooligosaccharides (LOS), of gram‐negative pathogenic bacteria that colonize human mucosae, e.g. and The development of this model has involved analysis of a series of pyocin‐resistant mutants with altered LOS and other recent immunochemical and structural data. A comprehensive approach to determining the necessary structural data has been constructed that utilizes liquid secondary ion mass spectrometry, tandem mass spectrometry, methylation analysis and nuclear magnetic resonance. To prepare purified oligosaccharides for these analyses, chromatographic and chemical techniques have been developed that include high‐pH anion‐exchange chromatography of underivatized oligosaccharides and reverse‐phase chromatography after derivatization with hydrazino alkyl benzoates. The proposed LOS model has several unique features that distinguish it from models developed for the lipopolysaccharides of enteric bacteria. This information should lead to an understanding of the unique structure/function relationship of LOS and to the development of carbohydrate‐based vaccines.
    Keywords: Bakterien ; Krankheitserreger ; Lipoprotein ; Strukturanalyse ; Oberflaechenstruktur ; Immunozytochemie ; Massenspektrometrie ; Kernresonanzspektrometrie ; Ionenaustauschchromatographie ; Zellmembran ; Theoretisches Modell ; Oligosaccharid ; Biology ; Anatomy & Physiology;
    ISSN: 0887-6134
    E-ISSN: 1096-9888
    E-ISSN: 23763868
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Biological Mass Spectrometry, 11/1990, Vol.19(11), pp.731-745
    ISSN: 1052-9306
    E-ISSN: 1096-9888
    Source: Wiley (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: mBio, 01 October 2017, Vol.8(5), p.e01592-17
    Description: Francisella tularensis is the causative agent of tularemia and a potential bioterrorism agent. In the present study, we isolated, identified, and quantified the proteins present in the membranes of the virulent type A strain, Schu S4, and the attenuated type B strain, LVS (live vaccine strain). Spectral counting of mass spectrometric data showed enrichment for membrane proteins in both strains. Mice vaccinated with whole LVS membranes encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing the adjuvant polyinosinic-polycytidylic acid [poly(I·C)] showed significant protection against a challenge with LVS compared to the results seen with naive mice or mice vaccinated with either membranes or poly(I·C) alone. The PLGA-encapsulated Schu S4 membranes with poly(I·C) alone did not significantly protect mice from a lethal intraperitoneal challenge with Schu S4; however, this vaccination strategy provided protection from LVS challenge. Mice that received the encapsulated Schu S4 membranes followed by a booster of LVS bacteria showed significant protection with respect to a lethal Schu S4 challenge compared to control mice. Western blot analyses of the sera from the Schu S4-vaccinated mice that received an LVS booster showed four immunoreactive bands. One of these bands from the corresponding one-dimensional (1D) SDS-PAGE experiment represented capsule. The remaining bands were excised, digested with trypsin, and analyzed using mass spectrometry. The most abundant proteins present in these immunoreactive samples were an outer membrane OmpA-like protein, FopA; the type IV pilus fiber building block protein; a hypothetical membrane protein; and lipoproteins LpnA and Lpp3. These proteins should serve as potential targets for future recombinant protein vaccination studies.
    Keywords: Biology
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages