Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: The Science of the Total Environment, Sept 1, 2015, Vol.526, p.77(11)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2015.03.134 Byline: Philipp Theuring, Adrian L. Collins, Michael Rode Abstract: Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (〈10[mu]m) sediment in the 15 000km.sup.2 Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (〉0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. Article History: Received 18 December 2014; Revised 29 March 2015; Accepted 29 March 2015 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Rivers – Analysis ; Suspended Sediment – Analysis ; Basins (Geology) – Analysis
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Plant Physiology, 1 October 2011, Vol.157(2), pp.587-598
    Description: A classical approach, protein separation by two-dimensional blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was combined with tandem mass spectrometry and up-to-date computer technology to characterize the mitochondrial "protein complex proteome" of Arabidopsis (Arabidopsis thaliana) in so far unrivaled depth. We further developed the novel GelMap software package to annotate and evaluate two-dimensional blue native/sodium dodecyl sulfate gels. The software allows (1) annotation of proteins according to functional and structural correlations (e.g. subunits of a distinct protein complex), (2) assignment of comprehensive protein identification lists to individual gel spots, and thereby (3) selective display of protein complexes of low abundance. In total, 471 distinct proteins were identified by mass spectrometry, several of which form part of at least 35 different mitochondrial protein complexes. To our knowledge, numerous protein complexes were described for the first time (e.g. complexes including pentatricopeptide repeat proteins involved in nucleic acid metabolism). Discovery of further protein complexes within our data set is open to everybody via the public GelMap portal at www.gelmap.de/arabidopsis_mito.
    Keywords: Applied sciences -- Materials science -- Materials ; Biological sciences -- Biology -- Cytology ; Biological sciences -- Biology -- Systems biology ; Information science -- Data products -- Databases ; Physical sciences -- Physics -- Mechanics ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Physics -- Mechanics
    ISSN: 00320889
    E-ISSN: 15322548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Hydrology, October 2015, Vol.529, pp.940-950
    Description: For capturing spatial variations of runoff and nutrient fluxes attributed to catchment heterogeneity, multi-site hydrological water quality monitoring strategies are increasingly put into practice. This study aimed to investigate the impacts of spatially distributed streamflow and streamwater Inorganic Nitrogen (IN) concentration observations on the identification of a continuous time, spatially semi-distributed and process-based hydrological water quality model HYPE (HYdrological Predictions for the Environment). A Bayesian inference based approach DREAM (DiffeRential Evolution Adaptive Metrololis algorithm) was combined with HYPE to implement model optimisation and uncertainty analysis on streamflow and streamwater IN concentration simulations at a nested meso scale catchment in central Germany. To this end, a 10-year period (1994–1999 for calibration and 1999–2004 for validation) was utilised. We compared the parameters’ posterior distributions, modelling performance using the best estimated parameter set and 95% prediction confidence intervals at catchment outlet for the calibration period that were derived from single-site calibration (SSC) and multi-site calibration (MSC) modes. For SSC, streamflow and streamwater IN concentration observations at only the catchment outlet were used. While, for MSC, streamflow and streamwater IN concentration observations from both catchment outlet and two internal sites were considered. Results showed that the uncertainty intervals of hydrological water quality parameters’ posterior distributions estimated from MSC, were narrower than those obtained from SSC. In addition, it was found that the MSC outperformed SSC on streamwater IN concentration simulations at internal sites for both calibration and validation periods, while the influence on streamflow modelling performance was small. This can be explained by the “nested” nature of the catchment and high correlation between discharge observations from different sites. Results revealed, also, that 95% prediction confidence intervals of streamflow and streamwater IN concentration estimated from MSC were more credible compared with those estimated from SSC, which are reflected by narrower confidence intervals and higher percentage of observations bracketed in the estimated unit confidence intervals. The outcomes of this study pointed out the importance of spatially distributed hydrological water quality observations for improving model parameter identification and provided guidelines for choice of adequate calibration strategy and design of hydrological water quality monitoring campaign.
    Keywords: Nitrogen Modelling ; Model Identification ; Multi-Site Calibration ; Uncertainty Analysis ; Spatially Distributed Observations ; Dream(Zs) ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Agriculture, Ecosystems and Environment, August 15, 2013, Vol.176, p.24(15)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.agee.2013.05.016 Byline: Irina Kistner, Gregor Ollesch, Ralph Meissner, Michael Rode Abstract: acents We coupled the process based 1D phosphorus soil model ANIMO with the hydrological WaSim-ETH model. acents We carried out a sampling scheme for P compounds testing the spatially distributed ANIMO model. acents A close correlation between P compounds and C.sub.org was found. acents Spatial variability of water soluble phosphorus (WSP) was highly affected by topography, microclimate and soil water balance. acents The coupled model successfully reproduced the spatial and seasonal variation of WSP. Author Affiliation: (a) Department of Aquatic Ecosystem Analysis and Management, UFZ Helmholtz Centre for Environmental Research, Brueckstrasse 3a, 39114 Magdeburg, Germany (b) Flussgebietsgemeinschaft Elbe, Geschaftsstelle Magdeburg, Otto-v.-Guericke-Stra[sz]e 5, 39104 Magdeburg, Germany (c) Department of Soil Physics, UFZ Helmholtz Centre for Environmental Research, Lysimeterstation Falkenberg Dorfstra[sz]e 55, 39615 Falkenberg, Germany Article History: Received 10 October 2012; Revised 15 May 2013; Accepted 16 May 2013
    Keywords: Water Balance (Hydrology) -- Analysis ; Soil Moisture -- Analysis
    ISSN: 0167-8809
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science of the Total Environment, 15 November 2016, Vol.571, pp.791-800
    Description: Despite extensive efforts to reduce nitrate transfer in agricultural areas, limited response is often observed in the nitrate concentration in rivers. To investigate the reasons for this limited response, nitrate dynamics in a 100 km agricultural catchment in eastern Germany was analysed from sub-hourly to decadal time-scales. Sub-hourly analysis of storm event dynamics during a typical hydrological year (2005–2006) was performed to identify periods of the year with high leaching risk and to link the latter to agricultural management practices in the catchment. Dynamic Harmonic Regression analysis of a 32-year (1982–2014) record of nitrate and discharge revealed that i) the long-term trend in nitrate concentration was closely related to that in discharge, suggesting that large-scale weather and climate patterns were masking the effect of improved nitrogen management on nitrate trends; ii) a persistent seasonal pattern with winter concentration maxima and summer minima could be observed, which was interpreted in terms of a dynamic nitrate concentration profile in the soil and subsoil; and iii) the catchment progressively changed from chemodynamic to more chemostatic behaviour over the three decades of study, which is a sign of long-term homogenisation of nitrate concentrations distribution over depth. This study shows that detailed physical understanding of nitrate dynamics across time scales can be obtained only through combined analysis of long-term records and high-resolution sensor data. Hence, a joint effort is advocated between environmental authorities, who usually perform long-term monitoring, and scientific programmes, which usually perform high-resolution monitoring.
    Keywords: Diffuse Pollution ; Climate ; Agriculture ; Catchment ; Long-Term ; High-Frequency ; Agriculture ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 01 September 2015, Vol.526, pp.77-87
    Description: Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (〈 10 μm) sediment in the 15 000 km Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (〉 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments.
    Keywords: Sediment Source Fingerprinting ; Water Quality ; Erosion ; Mongolia ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Agriculture, ecosystems & environment, 2013, Vol.176, pp.24-38
    Description: High availability of phosphorus in agricultural soils leads to increased phosphorus (P) losses from land to water and contributes to the eutrophication of surface water. The most important variable for the transport of soluble P via surface runoff is the labile P content in the top soil. Until now, a detailed understanding and quantitative estimates of the seasonal and spatial dynamics of labile P in the top soil layer at the catchment scale have been lacking. The objective of this paper is to analyze the spatial and temporal variability of labile P and to quantify concentrations in the top soil by coupling the process-based one dimensional P soil model ANIMO with a hydrological model (WaSim-ETH). For testing the spatially distributed ANIMO model, a sampling scheme for soil P compounds was carried out. The scheme comprised of 80 sampling points in a 150m grid in the 1.44km² study catchment Schäfertal, Germany. For a period of 2 years water soluble P (WSP), total phosphorus (TP), oxalate extractable P/Fe+Al, pH value and Cₒᵣg were analyzed. Close correlations with a high level of significance were observed between P compounds (from 0.733 to 0.737) and between P compounds and Cₒᵣg (from 0.508 and 0.527). It was found that, in addition to crop rotation and management practice, spatial variability of WSP was controlled by topography affected microclimate and soil water balance. The combined modeling approach was successfully calibrated for WSP in the top soil with a R² of 0.94. Although the accuracy of simulation results for the validation period was lower, the model reasonably reproduced the spatial and seasonal variation of WSP. The simulations identified areas of high WSP concentrations and revealed a spring depression with low WSP concentrations in the top soil. The new modeling approach can be used to better understand WSP availability and P yield at the catchment scale. ; p. 24-38.
    Keywords: Topsoil ; Seasonal Variation ; Soil Water Balance ; Agricultural Soils ; Surface Water ; Crop Management ; Watersheds ; Microclimate ; Phosphorus ; Hydrologic Models ; Spring ; Soil Sampling ; Mountains ; Topography ; Runoff ; Eutrophication ; Ph
    ISSN: 0167-8809
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Agriculture, Ecosystems and Environment, 15 August 2013, Vol.176, pp.24-38
    Description: High availability of phosphorus in agricultural soils leads to increased phosphorus (P) losses from land to water and contributes to the eutrophication of surface water. The most important variable for the transport of soluble P via surface runoff is the labile P content in the top soil. Until now, a detailed understanding and quantitative estimates of the seasonal and spatial dynamics of labile P in the top soil layer at the catchment scale have been lacking. The objective of this paper is to analyze the spatial and temporal variability of labile P and to quantify concentrations in the top soil by coupling the process-based one dimensional P soil model ANIMO with a hydrological model (WaSim-ETH). For testing the spatially distributed ANIMO model, a sampling scheme for soil P compounds was carried out. The scheme comprised of 80 sampling points in a 150 m grid in the 1.44 km study catchment Schäfertal, Germany. For a period of 2 years water soluble P (WSP), total phosphorus (TP), oxalate extractable P/Fe + Al, pH value and were analyzed. Close correlations with a high level of significance were observed between P compounds (from 0.733 to 0.737) and between P compounds and (from 0.508 and 0.527). It was found that, in addition to crop rotation and management practice, spatial variability of WSP was controlled by topography affected microclimate and soil water balance. The combined modeling approach was successfully calibrated for WSP in the top soil with a of 0.94. Although the accuracy of simulation results for the validation period was lower, the model reasonably reproduced the spatial and seasonal variation of WSP. The simulations identified areas of high WSP concentrations and revealed a spring depression with low WSP concentrations in the top soil. The new modeling approach can be used to better understand WSP availability and P yield at the catchment scale.
    Keywords: P Loss ; Water-Soluble P ; Animo ; Wasim-Eth ; Eutrophication ; Catchment Hydrology ; Surface Runoff ; Agriculture ; Environmental Sciences
    ISSN: 0167-8809
    E-ISSN: 1873-2305
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Science of the Total Environment, 01 December 2017, Vol.601-602, pp.636-645
    Description: The contamination of riverine sediments and suspended matter with hydrophobic pollutants is typically associated with urban land use. However, it is rarely related to the sediment supply of the watershed, because sediment yield data are often missing. We show for a suite of watersheds in two regions of Germany with contrasting land use and geology that the contamination of suspended particles with polycyclic aromatic hydrocarbons (PAH) can be explained by the ratio of inhabitants residing within the watershed and the watershed's sediment yield. The modeling of sediment yields is based on the Revised Universal Soil Loss Equation (RUSLE2015, Panagos et al., 2015) and the sediment delivery ratio (SDR). The applicability of this approach is demonstrated for watersheds ranging in size from 1.4 to 3000 km . The approach implies that the loading of particles with PAH can be assumed as time invariant. This is indicated by additional long-term measurements from sub-watersheds of the upper River Neckar basin, Germany. The parsimonious conceptual approach allows for reasonable predictions of the PAH loading of suspended sediments especially at larger scales. Our findings may easily be used to estimate the vulnerability of river systems to particle-associated urban pollutants with similar input pathways as the PAH or to indicate if contaminant point sources such as sites of legacy pollution exist in a river basin.
    Keywords: Sediment Quality ; Particle-Facilitated Pollutant Transport ; Pah ; Sediment Yield ; Urbanization ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Journal of Hydrology, May 2018, Vol.560, pp.141-149
    Description: A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995–September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.
    Keywords: Soluble Reactive Phosphorus ; Iron ; Redox Processes ; Catchment ; Point Source ; Load Apportionment ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages