Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: German
    In: Transparenzrating : Wege zur effizienten Analyse und Bewertung der Rechnungslegung von Unternehmen, pp. 47-57
    ISBN: 3-8349-3365-1
    Source: Deutsche Zentralbibliothek für Wirtschaftswissenschaften
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, August 19, 2014, Vol.9(8)
    Description: Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.
    Keywords: DNA Polymerases – Growth ; Proteins – Growth
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, Oct 15, 2014, Vol.9(10)
    Description: The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin [alpha] and [beta] subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of [beta]1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of [beta]4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by [beta]1 or [beta]4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating [beta]1 or [beta]4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.
    Keywords: DNA Polymerases ; Collagen ; Integrins
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(8), p.e105590
    Description: Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: PLoS ONE, Oct 15, 2014, Vol.9(10)
    Description: The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin [alpha] and [beta] subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of [beta]1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of [beta]4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by [beta]1 or [beta]4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating [beta]1 or [beta]4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.
    Keywords: Dna Polymerases ; Collagen ; Integrins
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(10), p.e110244
    Description: The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Cancer Letters, 28 October 2018, Vol.435, pp.121-126
    Description: Due to an increased understanding of molecular biology and the genomics of cancer, new and potent agents have been approved by the Food and Drug Administration (FDA) to fight this disease. However, all of these drugs cause severe side effects and resistance inevitably develops, re-activating tumor growth and dissemination. For this reason, patients turn to natural compounds as alternative or complementary treatment options, since it has been found that natural plant products may block, inhibit, or reverse cancer development. The present review focusses on the role of the natural compound sulforaphane (SFN) as an anti-tumor agent in urologic cancer. SFN is a natural compound found in cruciferous vegetables from the Brassicaceae family such as broccoli, cauliflower and cabbage. Several epidemiologic and clinical studies have documented chemopreventive properties of SFN, making it an interesting candidate for additive cancer treatment. SFN shows remarkable anti-tumor effects in vitro and in vivo without exerting toxicity. The review summarizes the current understanding of SFN and provides insights into its molecular mode of action with particular emphasis on epigenetic tumor control.
    Keywords: Sulphoraphane ; Dietary Hdac Inhibitor ; Chemoprevention ; Urologic Tumors ; Medicine
    ISSN: 0304-3835
    E-ISSN: 1872-7980
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Phytomedicine, 15 April 2017, Vol.27, pp.1-7
    Description: The mechanistic target of rapamycin (mTOR) inhibitors, everolimus and temsirolimus, have widened therapeutic options to treat renal cell carcinoma (RCC). However, chronic treatment with these inhibitors often induces resistance, leading to therapeutic failure. The natural compound, sulforaphane (SFN), was added to an everolimus based regime in vitro in the hopes of preventing resistance development. A panel of RCC cell lines (A498, Caki-1, KTCTL-26) was treated with everolimus or SFN or with an everolimus-SFN-combination, either short- (24 h) or long-term (8 weeks), and cell growth, proliferation, apoptosis, and cell cycle phases were measured. The cell cycle regulating proteins cdk1, cdk2, cyclin A, cyclin B, akt and raptor (both total and activated) were also evaluated. Short-term incubation with everolimus (1 nM) or SFN (5 µM) significantly reduced RCC cell growth. Additive effects on tumor growth and proliferation were evoked by the SFN-everolimus combination. Long-term everolimus-incubation led to resistance development in Caki-1 cells, evidenced by elevated growth and proliferation, associated with an increased percentage of G2/M (non-synchronized cell model) or S-phase (synchronized cell model) cells. Molecular analysis revealed up-regulation of the cdk1-cyclin B and cdk2-cyclin A axis, along with elevated phosphorylation of the mTOR sub-member, raptor. In contrast, resistance development was not observed with the long-term combination of SFN-everolimus. The combination suppressed Caki-1 growth and proliferation, and was associated with an increase in G0/G1-phase cells, diminished cdk1 and akt (both total and activated), cyclin B and raptor expression. Adding SFN to an everolimus based RCC treatment regimen in vitro delayed resistance development observed with chronic everolimus monotherapy. Ongoing in vivo studies are necessary to verify the in vitro data.
    Keywords: Renal Cell Carcinoma ; Sulforaphane ; Everolimus ; Resistance ; Cell Growth ; Medicine ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 0944-7113
    E-ISSN: 1618-095X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Oncotarget, 10 April 2018, Vol.9(27), pp.18747-18759
    Description: The mechanistic target of the rapamycin (mTOR) inhibitor, temsirolimus, has significantly improved the outcome of patients with renal cell carcinoma (RCC). However, development of temsirolimus-resistance limits its effect and metastatic progression subsequently recurs. Since integrin α7 (ITGA7) is speculated to promote metastasis, this investigation was designed to investigate whether temsirolimus-resistance is associated with altered ITGA7 expression in RCC cell lines and modified tumor cell adhesion and invasion. Caki-1, KTCTL-26, and A498 RCC cell lines were driven to temsirolimus-resistance by exposing them to temsirolimus over a period of 12 months. Subsequently, adhesion to human umbilical vein endothelial cells, to immobilized fibronectin, or collagen was investigated. Chemotaxis was evaluated with a modified Boyden chamber assay and ITGA7 expression by flow cytometry and western blotting. Chemotaxis significantly decreased in temsirolimus-sensitive cell lines upon exposure to low-dosed temsirolimus, but increased in temsirolimus-resistant tumor cells upon reexposure to the same temsirolimus dose. The increase in chemotaxis was accompanied by elevated ITGA7 at the cell surface membrane with simultaneous reduction of intracellular ITGA7. ITGA7 knock-down significantly diminished motility of temsirolimous-sensitive cells but elevated chemotactic activity of temsirolimus-resistant Caki-1 and KTCTL-26 cells. Therefore, ITGA7 appears closely linked to adhesion and migration regulation in RCC cells. It is postulated that temsirolimus-resistance is associated with translocation of ITGA7 from inside the cell to the outer surface. This switch forces RCC migration forward. Whether ITGA7 can serve as an important target in combatting RCC requires further investigation.
    Keywords: Itga7 ; Chemotaxis ; Renal Cell Cancer ; Resistance ; Temsirolimus
    E-ISSN: 1949-2553
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: International Journal of Molecular Medicine, 02/2016, Vol.37(2), pp.526-532
    Description: Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro .
    Keywords: Amygdalin ; Cell Cycle ; Cell Growth ; Differentiation Marker ; Renal Cell Carcinoma
    ISSN: 1107-3756
    E-ISSN: 1791-244X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages