Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 01 December 2015, Vol.112(48), pp.14960-5
    Description: Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated.
    Keywords: Bdnf ; H3k27 ; Nmda ; Mglu2 ; Resilience ; Behavior, Animal ; Epigenesis, Genetic ; Synaptic Transmission ; Dentate Gyrus -- Metabolism ; Glutamic Acid -- Metabolism ; Stress, Psychological -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Medicine & Science in Sports & Exercise, 2013, Vol.45(1), pp.29-35
    Description: PURPOSE: Anabolic androgenic steroids (AAS) are synthetic androgen-like compounds that are abused in sport communities despite their adverse effects. Nerve growth factor (NGF) influences neuronal differentiation and survival, and it also mediates higher brain functions such as learning and memory. Changes in NGF expression have been implicated in neurodegenerative disorders, including Alzheimer disease. Hence, we decided to study the effect of chronic AAS exposure on brain NGF profile, NGF-dependent cholinergic function, and related behavioral performance. METHODS: Male Wistar rats were injected for 4 wk with either nandrolone or stanozolol at daily doses (5.0 mg·kg, s.c.) that are considered equivalent to those abused by humans. NGF levels and NGF receptor (TrkA and p75NTR) expression were measured in the hippocampus and in the basal forebrain. Choline acetyltransferase expression was evaluated in basal forebrain. Spatial learning and memory were assessed using the Morris water maze. RESULTS: AAS treatment caused region-specific changes in the expression of NGF and its receptors. Both nandrolone and stanozolol increased NGF levels in the hippocampus and reduced NGF levels in the basal forebrain, reduced p75NTR expression in the hippocampus, and failed to affect TrkA expression in the basal forebrain. Finally, AAS treatment reduced the expression of choline acetyltransferase in the basal forebrain and impaired the behavioral performance in the Morris water maze. CONCLUSION: The evidence that supraphysiological doses of AAS cause neurotrophic unbalance and related behavioral disturbances raises the concern that AAS abuse in humans may affect mechanisms that lie at the core of neuronal plasticity.
    Keywords: Anabolic Agents -- Adverse Effects ; Androgens -- Adverse Effects ; Hippocampus -- Drug Effects ; Nandrolone -- Adverse Effects ; Nerve Growth Factor -- Metabolism ; Performance-Enhancing Substances -- Adverse Effects ; Stanozolol -- Adverse Effects;
    ISSN: 0195-9131
    E-ISSN: 15300315
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States, March 19, 2013, Vol.110(12), p.4804(6)
    Description: Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-KB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-kB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action. doi/10.1073/pnas.1216100110
    Keywords: Antidepressants -- Research ; Antidepressants -- Analysis ; Depression (Mood disorder) -- Research ; Depression (Mood disorder) -- Analysis
    ISSN: 0027-8424
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 19 March 2013, Vol.110(12), pp.4804-4809
    Description: Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a welltolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-KB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-κB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.
    ISSN: 00278424
    Source: Archival Journals (JSTOR)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 19 March 2013, Vol.110(12), pp.4804-9
    Description: Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.
    Keywords: Acetylcarnitine -- Pharmacology ; Antidepressive Agents -- Pharmacology ; Epigenesis, Genetic -- Drug Effects ; Hippocampus -- Metabolism ; Nerve Tissue Proteins -- Biosynthesis ; Prefrontal Cortex -- Metabolism ; Receptors, Metabotropic Glutamate -- Biosynthesis
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Geriatric Psychiatry, April 2014, Vol.29(4), pp.439-440
    Description: Byline: Martina Curto, Antonio Martocchia, Fabrizia Comite, Sergio Scaccianoce, Dionysios Xenos, Carla Nasca, Stefano Ferracuti, Paolo Girardi, Ferdinando Nicoletti, Paolo Falaschi ***** No abstract is available for this article. *****
    Keywords: Elderly Patients ; Depression (Mood disorder) ; Alzheimer's Disease ; Comorbidity ; Brain;
    ISSN: 0885-6230
    E-ISSN: 1099-1166
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Psychopharmacology, 2010, Vol.211(3), pp.355-366
    Description: Byline: Michele S. Milella (1), Francesca Passarelli (2), Lorenza Carolis (1), Chiara Schepisi (1), Paola Nativio (2), Sergio Scaccianoce (1), Paolo Nencini (1) Keywords: Polydipsia; Quinpirole; Orexin; Compulsive behavior; Dopamine; Schizophrenia Abstract: Rationale Repeated administration of the dopamine D2/D3 agonist quinpirole (QNP) progressively increases non-regulatory water intake. This effect may model psychotic polydipsia, a potentially fatal but poorly understood condition. Objectives The growing evidence for a role of orexin in mediating arousal and cognition has linked this peptide to schizophrenia, hence we examined whether manipulations of dopaminergic and orexinergic systems, as well as of setting, would further characterize the model. Methods Water intake was measured in rats sequentially tested in home and then operant conditioning setting, with chronic administration of D2 antagonist haloperidol (Hal) prior to QNP treatment. A group of rats similarly treated was also assessed for orexin A (OxA) expression in the cortex. Finally, the effect of the orexin-1 receptor antagonist SB-334867 on QNP-induced polydipsia was evaluated. Results In rats made polydipsic by QNP the amount of water drank during the first 4 h was strongly correlated with the degree of dissociation between appetitive and consummatory components of drinking behavior in the following hour of operant access to water. Hal 0.2 mg/kg prevented both polydipsia and the dissociation, while 0.1 mg/kg only blocked the dissociation. Chronic QNP treatment increased, in a Hal-reversible way, OxA expression in the somatosensory cortex (SI). Moreover, pretreatment with SB-334867 sped up and potentiated QNP-induced polydipsia. Conclusions Results disclose compulsive components in QNP-induced polydipsia that are mediated by dopamine D2 receptors. QNP also regulates OxA expression in the SI, while the block of orexin-1 receptors enhances QNP-induced polydipsia. We suggest that dopamine and OxA play opposite roles in QNP-induced polydipsia. Author Affiliation: (1) Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 5 Piazzale Aldo Moro, 00185, Rome, Italy (2) Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy Article History: Registration Date: 06/06/2010 Received Date: 24/02/2010 Accepted Date: 03/06/2010 Online Date: 16/06/2010 Article note: Electronic supplementary material The online version of this article (doi: 10.1007/s00213-010-1909-5) contains supplementary material, which is available to authorized users.
    Keywords: Polydipsia ; Quinpirole ; Orexin ; Compulsive behavior ; Dopamine ; Schizophrenia
    ISSN: 0033-3158
    E-ISSN: 1432-2072
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Neuropsychopharmacology, 2013, Vol.38(7), p.1276
    Description: Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long-term retention of object recognition memory.
    Keywords: Medicine ; Pharmacy, Therapeutics, & Pharmacology ; Anatomy & Physiology;
    ISSN: 0893-133X
    E-ISSN: 1740634X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of the American Geriatrics Society, October 2016, Vol.64(10), pp.e78-e80
    Description: To purchase or authenticate to the full-text of this article, please visit this link: http://onlinelibrary.wiley.com/doi/10.1111/jgs.14361/abstract Byline: Maria Tecla Pecci, Walter Verrusio, Antonio F. Radicioni, Antonella Anzuini, Alessia Renzi, Valentina Martinelli, Evaristo Ettorre, Jessica Miele, Sergio Scaccianoce, Mauro Cacciafesta ***** No abstract is available for this article. *****
    Keywords: Elderly;
    ISSN: 0002-8614
    E-ISSN: 1532-5415
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Anesthesiology, 2011, Vol.114(6), pp.1380-1388
    Description: BACKGROUND:: Propofol is associated with postoperative mood alterations and induces a higher incidence of dreaming compared with other general anesthetics. These effects might be mediated by propofolʼs inhibitory action on fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid anandamide. Because propofol is also associated with a higher incidence of traumatic memories from perioperative awareness and intensive care unit treatment and the endocannabinoid system is involved in regulating memory consolidation of emotional experiences, the authors investigated whether propofol, at anesthetic doses, modulates memory consolidation via an activation of the endocannabinoid system. METHODS:: Male Sprague-Dawley rats were trained on an inhibitory avoidance task in which they received an inescapable foot shock upon entering the dark compartment of the apparatus. Drugs were administered intraperitoneally immediately or 30, 90, or 180 min after training. On the retention test 48 h later, the latency to reenter the dark compartment was recorded and taken as a measure of memory retention. RESULTS:: The anesthetic doses of propofol administered after training significantly increased latencies of 48-h inhibitory avoidance performance (483.4 ± 181.3, 432.89 ± 214.06, 300 and 350 mg/kg, respectively; mean ± SD) compared with the corresponding vehicle group (325.33 ± 221.22, mean ± SD), which is indicative of stronger memory consolidation in propofol treated rats. Administration of a nonimpairing dose of the cannabinoid receptor antagonist rimonabant blocked the memory enhancement induced by propofol (123.39 ± 133.10, mean ± SD). Delayed administration of propofol 90 and 180 min after training or immediate posttraining administration of the benzodiazepine midazolam or the barbiturate pentobarbital did not significantly alter retention. CONCLUSIONS:: These findings indicate that propofol, in contrast to other commonly used sedatives, enhances emotional memory consolidation when administered immediately after a stressful event by enhancing endocannabinoid signaling.
    Keywords: Animal Models ; Avoidance ; Stressors ; Memory ; Neurotransmitters ; Drug Therapy ; Benzodiazepines ; Antianxiety Drugs;
    ISSN: 0003-3022
    E-ISSN: 15281175
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages