Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 January 2016, Vol.540, pp.444-454
    Description: Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties.
    Keywords: Micropollutants ; River Segments ; Mass Balances ; Removal Processes ; Diurnal Patterns ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental Pollution, Jan, 2013, Vol.172, p.155(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envpol.2012.09.004 Byline: Marc Schwientek (a), Hermann Rugner (a), Barbara Beckingham (b), Bertram Kuch (c), Peter Grathwohl (a)(b) Abstract: Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles (C.sub.sus) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that C.sub.sus is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. Author Affiliation: (a) Water & Earth System Science (WESS) Competence Cluster, Keplerstr. 17, 72074 Tubingen, Germany (b) Center of Applied Geoscience, Eberhard Karls University of Tubingen, Holderlinstr. 12, 72074 Tubingen, Germany (c) Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtale 2, 70569 Stuttgart, Germany Article History: Received 7 June 2012; Revised 24 August 2012; Accepted 8 September 2012
    Keywords: Rivers ; Polycyclic Aromatic Hydrocarbons
    ISSN: 0269-7491
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Hydrology, 12 April 2013, Vol.486, pp.31-38
    Description: ► We studied patterns of scores for a principal component analysis of water quality. ► Association of principal component scores with supplementary data was analyzed. ► Catchment processes governing water quality were identified and localized. The analysis of spatial–temporal patterns of scores, including their association with supplementary data, can refine a principal component analysis of water quality data. We hypothesized that this type of analysis could considerably improve the understanding of processes governing water quality at catchment scales. To test this, water quality data from the 180 km Ammer catchment in south-western Germany was investigated using principal component analysis. We analyzed data for (a) surface water from the Ammer River and its tributaries, (b) spring water from the main aquifers and (c) deep groundwater from wells. Using the analysis of scores, we found that the quality of both surface and groundwater primarily reflected the input of solutes determined by land use and geology. For water quality in the Ammer catchment, the conservative mixing of water of different origins and ages was more important than reactive transport processes along the flow paths. These results demonstrate the potential of our analysis of principal component scores to identify dominant processes at catchment scales.
    Keywords: Hydrogeochemistry ; Multivariate Statistics ; Watershed ; Groundwater Surface Water Interaction ; Dominant Process Concept ; End Member Mixing Analysis ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: The Science of the Total Environment, August 15, 2014, Vol.490, p.191(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2014.04.110 Byline: Hermann Rugner, Marc Schwientek, Marius Egner, Peter Grathwohl Abstract: Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000NTU for the field samples and up to 8000NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships -- even for high turbidity values observed during flood events (〉2000NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Article History: Received 17 March 2014; Revised 25 April 2014; Accepted 25 April 2014 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Rivers ; Heavy Metals ; Proxy ; Polycyclic Aromatic Hydrocarbons ; Sediments (Geology)
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science of the Total Environment, 01 November 2018, Vol.640-641, pp.315-326
    Description: This work presents a post-event survey study, addressing the geomorphic response and large wood budget of two torrents, Grimmbach and Orlacher Bach, in southwestern Germany that were affected by a flash flood on May 29, 2016. During the event, large amounts of wood clogged and damaged a bridge of a cycling path at the outlet of the Grimmbach, while the town of Braunsbach was devastated by discharge and material transported along the Orlacher Bach. The severity of the event in these two small catchments (30.0 km and 5.95 km , respectively) is remarkable in basins with a relatively low average slope (10.7 and 12.0%, respectively). In order to gain a better understanding of the driving forces during this flood event an integrated approach was applied including (i) an estimate of peak discharges, (ii) an analysis of changes in channel width by comparing available aerial photographs before the flood with a post-flood aerial surveys with an Unmanned Aerial Vehicle and validation with field observations, (iii) a detailed mapping of landslides and analysis of their connectivity with the channel network and finally (iv) an analysis of the amounts of large wood recruited and deposited in the channel. The morphological changes in the channels can be explained by hydraulic parameters, such as stream power and unit stream power, and by morphological parameters such as the valley confinement. This is similar for LW recruitment amounts and volume of exported LW since most of it comes from the erosion of the valley floor. The morphological changes and large wood recruitment and deposit are in the range of studied mountain rivers. Both factors thus need to be considered for mapping and mitigating flash flood hazards also in this kind of low range mountains.
    Keywords: Floods ; Large Wood ; Channel Widening ; Landslides ; Large Wood Budget ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 15 August 2017, Vol.592, pp.215-227
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2017.03.047 Byline: Susanne I. Schmidt, Mark O. Cuthbert, Marc Schwientek Abstract: Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Article History: Received 4 January 2017; Revised 5 March 2017; Accepted 6 March 2017 Article Note: (miscellaneous) Editor: Jay Gan
    Keywords: Groundwater Ecology ; Temporal Scale ; Spatial Scale ; Fauna ; Micro Scale Environment Heterogeneity ; Unconsolidated Sediment ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 15 August 2014, Vol.490, pp.191-198
    Description: Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids ( ) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and with time). Laboratory and field results agreed very well and showed that turbidity and were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and vs. PAHs relationships — even for high turbidity values observed during flood events (〉 2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events.
    Keywords: Pollutant Fluxes in Rivers ; Turbidity ; Total Suspended Solids ; Particle Facilitated Transport ; Polycyclic Aromatic Hydrocarbons ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 01 December 2017, Vol.601-602, pp.636-645
    Description: The contamination of riverine sediments and suspended matter with hydrophobic pollutants is typically associated with urban land use. However, it is rarely related to the sediment supply of the watershed, because sediment yield data are often missing. We show for a suite of watersheds in two regions of Germany with contrasting land use and geology that the contamination of suspended particles with polycyclic aromatic hydrocarbons (PAH) can be explained by the ratio of inhabitants residing within the watershed and the watershed's sediment yield. The modeling of sediment yields is based on the Revised Universal Soil Loss Equation (RUSLE2015, Panagos et al., 2015) and the sediment delivery ratio (SDR). The applicability of this approach is demonstrated for watersheds ranging in size from 1.4 to 3000 km . The approach implies that the loading of particles with PAH can be assumed as time invariant. This is indicated by additional long-term measurements from sub-watersheds of the upper River Neckar basin, Germany. The parsimonious conceptual approach allows for reasonable predictions of the PAH loading of suspended sediments especially at larger scales. Our findings may easily be used to estimate the vulnerability of river systems to particle-associated urban pollutants with similar input pathways as the PAH or to indicate if contaminant point sources such as sites of legacy pollution exist in a river basin.
    Keywords: Sediment Quality ; Particle-Facilitated Pollutant Transport ; Pah ; Sediment Yield ; Urbanization ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Environmental pollution, 2013, Vol.172, pp.155-162
    Description: Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles (Cₛᵤₛ) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that Cₛᵤₛ is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. ; p. 155-162.
    Keywords: Geology ; Water Quality ; Sediment Contamination ; Monitoring ; Population Density ; Watersheds ; Polycyclic Aromatic Hydrocarbons ; Rivers ; Urbanization ; Climate
    ISSN: 0269-7491
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Environmental Pollution, January 2013, Vol.172, pp.155-162
    Description: Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles ( ) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. ► PAHs in water samples show a linear correlation with the total suspended solids. ► PAHs on suspended solids correspond to mean concentrations in sediments sampled. ► Degree of urban pressure per particle flux drives PAH loads on suspended particles. ► Dilution of particle associated pollutants requires “clean background” particles. Particle-facilitated transport of PAHs was found to relate to urban population pressure relative to suspended particle loading in contrasting catchments.
    Keywords: Polycyclic Aromatic Hydrocarbons ; Land Use ; Suspended Solids ; Water Quality ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages