Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 16 February 2016, Vol.113(7), pp.1847-52
    Description: Four decades ago, Leigh Van Valen presented the Red Queen's hypothesis to account for evolution of species within a multispecies ecological community [Van Valen L (1973) Evol Theory 1(1):1-30]. The overall conclusion of Van Valen's analysis was that evolution would continue even in the absence of abiotic perturbations. Stenseth and Maynard Smith presented in 1984 [Stenseth NC, Maynard Smith J (1984) Evolution 38(4):870-880] a model for the Red Queen's hypothesis showing that both Red-Queen type of continuous evolution and stasis could result from a model with biotically driven evolution. However, although that contribution demonstrated that both evolutionary outcomes were possible, it did not identify which ecological conditions would lead to each of these evolutionary outcomes. Here, we provide, using a simple, yet general population-biologically founded eco-evolutionary model, such analytically derived conditions: Stasis will predominantly emerge whenever the ecological system contains only symmetric ecological interactions, whereas both Red-Queen and stasis type of evolution may result if the ecological interactions are asymmetrical, and more likely so with increasing degree of asymmetry in the ecological system (i.e., the more trophic interactions, host-pathogen interactions, and the like there are [i.e., +/- type of ecological interactions as well as asymmetric competitive (-/-) and mutualistic (+/+) ecological interactions]). In the special case of no between-generational genetic variance, our results also predict dynamics within these types of purely ecological systems.
    Keywords: Coevolution ; Ecosystem Structure ; Evolution Within Ecological Communities ; Mathematical Analysis ; Mathematical Modeling ; Biological Evolution ; Ecology ; Models, Theoretical
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    Description: Fish stocks experiencing high fishing mortality show a tendency to mature earlier and at a smaller size, which may have a genetic component and therefore long-lasting economic and biological effects. To date, the economic effects of such ecoevolutionary dynamics have not been empirically investigated. Using 70 y of data, we develop a bioeconomic model for Northeast Arctic cod to compare the economic yield in a model in which life-history traits can vary only through phenotypic plasticity with a model in which, in addition, genetic changes can occur. We find that evolutionary changes toward faster growth and earlier maturation occur consistently even if a stock is optimally managed. However, if a stock is managed optimally, the evolutionary changes actually increase economic yield because faster growth and earlier maturation raise the stock’s productivity. The optimal fishing mortality is almost identical for the evolutionary and nonevolutionary model and substantially lower than what it has been historically. Therefore, the costs of ignoring evolution under optimal management regimes are negligible. However, if fishing mortality is as high as it has been historically, evolutionary changes may result in economic losses, but only if the fishery is selecting for medium-sized individuals. Because evolution facilitates growth, the fish are younger and still immature when they are susceptible to getting caught, which outweighs the increase in productivity due to fish spawning at an earlier age.
    Keywords: Atlantic Cod ; Atlantisk Torsk ; Genetics ; Genetikk ; Management Advice ; Forvaltningsråd
    ISSN: 00278424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, 2017, Vol.552(7683), p.92
    Description: In the fossil record, taxa exhibit a regular pattern of waxing and waning of occupancy, range or diversity between their origin and extinction. This pattern appears to contradict the law of constant extinction, which states that the probability of extinction in a given taxon is independent of that taxon's age. It is nevertheless well established for species, genera and higher taxa of terrestrial mammals, marine invertebrates, marine microorganisms, and recent Hawaiian clades of animals and plants. Here we show that the apparent contradiction between a stochastically constant extinction rate and the seemingly deterministic waxing and waning pattern of taxa disappears when we consider their peak of expansion rather than their final extinction. To a first approximation, we find that biotic drivers of evolution pertain mainly to the peak of taxon expansion, whereas abiotic drivers mainly apply to taxon extinction. The Red Queen's hypothesis, which emphasizes biotic interactions, was originally proposed as an explanation of the law of constant extinction. Much effort has since been devoted to determining how this hypothesis, emphasizing competition for resources, relates to the effects of environmental change. One proposed resolution is that biotic and abiotic processes operate at different scales. By focusing attention on taxon expansion rather than survival, we resolve an apparent contradiction between the seemingly deterministic waxing and waning patterns over time and the randomness of extinction that the Red Queen's hypothesis implies.
    Keywords: Biological Evolution ; Extinction, Biological ; Models, Biological ; Phylogeny;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Nature, April 17, 2008, Vol.452(7189), p.825(2)
    ISSN: 0028-0836
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 2011, Vol.108(35), pp.14521-14526
    Description: It is becoming increasingly clear that global warming is taking place; however, its long-term effects on biological populations are largely unknown due to lack of long-term data. Here, we reconstructed a 1,910-y-long time series of outbreaks of Oriental migratory locusts (Locusta migratoria manilensis) in China, on the basis of information extracted from 〉8,000 historical documents. First by analyzing the most recent period with the best data quality using generalized additive models, we found statistically significant associations between the reconstructed locust abundance and indexes of precipitation and temperature at both annual (A.D. 1512–1911) and decadal (A.D. 1000–1900) scales: There were more locusts under dry and cold conditions and when locust abundance was high in the preceding year or decade. Second, by exploring locust–environment correlations using a 200-y moving window, we tested whether these associations also hold further back in time. The locust–precipitation correlation was found to hold at least as far back as to A.D. 500, supporting the robustness of this link as well as the quality of both reconstructions. The locust–temperature correlation was weaker and less consistent, which may reflect this link being indirect and thus more easily moderated by other factors. We anticipate that further analysis of this unique time series now available to the scientific community will continue to provide insights into biological consequences of climate change in the years to come. ; p. 14521-14526.
    Keywords: Long Term Effects ; Time Series Analysis ; Locusts ; Locusta Migratoria ; Climate ; Temperature ; Global Warming
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 10 March 2015, Vol.112(10), pp.3020-5
    Description: The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe.
    Keywords: Yersinia Pestis ; Climate-Driven Disease Dynamics ; Medieval Epidemiology ; Climate ; Plague -- Transmission
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 30 August 2011, Vol.108(35), pp.14527-32
    Description: Plague (caused by the bacterium Yersinia pestis) is a zoonotic reemerging infectious disease with reservoirs in rodent populations worldwide. Using one-half of a century of unique data (1949-1995) from Kazakhstan on plague dynamics, including data on the main rodent host reservoir (great gerbil), main vector (flea), human cases, and external (climate) conditions, we analyze the full ecoepidemiological (bubonic) plague system. We show that two epidemiological threshold quantities play key roles: one threshold relating to the dynamics in the host reservoir, and the second threshold relating to the spillover of the plague bacteria into the human population.
    Keywords: Plague -- Transmission
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 01 February 2011, Vol.108(5), pp.1961-6
    Description: Understanding how populations respond to changes in climate requires long-term, high-quality datasets, which are rare for marine systems. We estimated the effects of climate warming on cod lengths and length variability using a unique 91-y time series of more than 100,000 individual juvenile cod lengths from surveys that began in 1919 along the Norwegian Skagerrak coast. Using linear mixed-effects models, we accounted for spatial population structure and the nested structure of the survey data to reveal opposite effects of spring and summer warming on juvenile cod lengths. Warm summer temperatures in the coastal Skagerrak have limited juvenile growth. In contrast, warmer springs have resulted in larger juvenile cod, with less variation in lengths within a cohort, possibly because of a temperature-driven contraction in the spring spawning period. A density-dependent reduction in length was evident only at the highest population densities in the time series, which have rarely been observed in the last decade. If temperatures rise because of global warming, nonlinearities in the opposing temperature effects suggest that negative effects of warmer summers will increasingly outweigh positive effects of warmer springs, and the coastal Skagerrak will become ill-suited for Atlantic cod.
    Keywords: Body Size ; Climate ; Gadus Morhua
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Oecologia, 2012, Vol.169(3), pp.685-694
    Description: In a changing environment, the maintenance of communities is subject to many constraints (phenology, resources, climate, etc.). One such constraint is the relationship between conspecifics and competitors. In mixed colonies, seabirds may have to cope with interspecific and intraspecific competition for both space and food resources. We applied competitive interaction models to data on three seabird breeding populations: black-legged kittiwake ( Rissa tridactyla ), common guillemot ( Uria aalge ) and Brünnich’s guillemot ( Uria lomvia ) collected over 27-years at Kharlov Island in the Barents Sea. We found a competitive effect only for the kittiwake breeding population size on the common guillemot breeding population size when kittiwakes were abundant. The timing of kittiwake breeding negatively affected the number of breeding Brünnich’s guillemots. The timing of breeding was negatively correlated to biomass of the main pelagic fish in the Barents Sea, the capelin ( Mallotus villosus ), which suggests an indirect action. The community matrix shows that the community was not stable. The kittiwake population did not decrease as seen in north Norwegian populations. Likewise, the common guillemot population, after a crash in 1985, was recovering at Kharlov while Norwegian populations were decreasing. Only the Brünnich’s guillemot showed a decrease at Kharlov until 1999. We suggest that the stability of the kittiwake and common guillemot populations at Kharlov is due to better feeding conditions than in colonies of the Norwegian coast, linked to a possible eastward shift of the capelin population with the temperature increase of the Barents Sea.
    Keywords: Black-legged kittiwake ; Breeding phenology ; Colonial seabirds ; Guillemots ; Competition
    ISSN: 0029-8549
    E-ISSN: 1432-1939
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Ohlberger, Jan Rogers, Lauren Stenseth, Nils Christian . Stochasticity and determinism: How density-independent and density-dependent processes affect population variability. PLoS ONE. 2014, 9(6)
    Description: A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength...
    Keywords: Sciences (General);
    ISSN: 19326203
    E-ISSN: 19326203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages