Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 April 2016, Vol.548-549, pp.51-59
    Description: Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6–12% of total DOM released by the catchments was degraded within the tributaries.
    Keywords: Bacterial Production ; Doc ; Freshness Index ; Humification Index ; Phosphorus ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, May 2017, Vol.23(5), pp.1891-1901
    Description: Reductions in emissions have successfully led to a regional decline in atmospheric nitrogen depositions over the past 20 years. By analyzing long‐term data from 110 mountainous streams draining into German drinking water reservoirs, nitrate concentrations indeed declined in the majority of catchments. Furthermore, our meta‐analysis indicates that the declining nitrate levels are linked to the release of dissolved iron to streams likely due to a reductive dissolution of iron() minerals in riparian wetland soils. This dissolution process mobilized adsorbed compounds, such as phosphate, dissolved organic carbon and arsenic, resulting in concentration increases in the streams and higher inputs to receiving drinking water reservoirs. Reductive mobilization was most significant in catchments with stream nitrate concentrations 〈6 mg L. Here, nitrate, as a competing electron acceptor, was too low in concentration to inhibit microbial iron() reduction. Consequently, observed trends were strongest in forested catchments, where nitrate concentrations were unaffected by agricultural and urban sources and which were therefore sensitive to reductions of atmospheric nitrogen depositions. We conclude that there is strong evidence that the decline in nitrogen deposition toward pre‐industrial conditions lowers the redox buffer in riparian soils, destabilizing formerly fixed problematic compounds, and results in serious implications for water quality.
    Keywords: Atmospheric Deposition ; Carbon Cycle ; Nitrogen Biogeochemistry ; Organic Matter ; Riparian Zone ; Streamwater Chemistry
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Hydrology, May 2018, Vol.560, pp.141-149
    Description: A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995–September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.
    Keywords: Soluble Reactive Phosphorus ; Iron ; Redox Processes ; Catchment ; Point Source ; Load Apportionment ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Freshwater Biology, September 2018, Vol.63(9), pp.1063-1076
    Description: To counteract the severe consequences of eutrophication on water quality and ecosystem health, nutrient inputs have been reduced in many lakes and reservoirs during the last decades. Contrary to expectations, in some lakes phytoplankton biomass did not decrease in response to oligotrophication (nutrient reduction). The underlying mechanisms preventing a decrease in biomass in these lakes are the subject of ongoing discussion. We used a hitherto unpublished long‐term data set ranging from 1961 until 2016 from a German drinking water reservoir (Rappbode Reservoir) to investigate the underlying mechanisms preventing a decrease in biomass. Total phosphorus (TP) concentrations in the Rappbode Reservoir dropped abruptly in 1990 from 0.163 to 0.027 mg/L within three consecutive years, as a result of banning phosphate‐containing detergents. Despite substantial reductions in TP, total annual phytoplankton biomass did not decline in the long‐run, and therefore, the yield of total phytoplankton biomass per unit phosphorus largely increased. Regression analysis revealed a positive association between the yield and potentially phagotrophic mixotrophs (R2 = .465, p 〈 .001). We infer that by ingesting bacteria, mixotrophic species were capable of exploiting additional P sources that are not accessible to obligate autotrophic phytoplankton, eventually preventing a decrease in algal biomass after TP reductions. Long‐term epilimnetic phosphorus concentrations during the winter mixing period decreased to a greater degree than summer phosphorus concentrations. Apparently, TP losses over the season were less intense. Spring diatom biomass also markedly decreased after oligotrophication. In fact, spring diatom biomass was positively related to the TP loss over the season suggesting diatoms play an important role in P reduction. However, this intraannual P processing was not the primary factor when focusing on the average yearly yield, which remained to be fully explained by mixotrophs. Our study demonstrates this ecosystem's ability to compensate for changes in resource availability through changes in phytoplankton community composition and functional strategies. We conclude that an increase in mixotrophy and the ability to make bacterial phosphorus available for phytoplankters were the main factors that allowed the phytoplankton community of the Rappbode Reservoir to adapt to lower nutrient levels without a loss in total biomass.
    Keywords: Community Composition ; Long‐Term Monitoring ; Mixotrophy ; Oligotrophication ; Sedimentation
    ISSN: 0046-5070
    E-ISSN: 1365-2427
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Water Research, 15 April 2017, Vol.113, pp.149-159
    Description: Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio 〉 0.5,  〉 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production.
    Keywords: Fticr-MS ; Radiocarbon ; Mobilization ; Flocculation ; Drinking Water Treatment ; Ultrahigh Resolution Mass Spectrometry ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Change Biology, September 2017, Vol.23(9), pp.e5-e6
    Description: Increasing concentrations of dissolved iron and DOC are likely linked to decreasing nitrogen depositon.
    Keywords: Atmospheric Deposition ; Carbon Cycle ; Nitrogen Biogeochemistry ; Organic Matter ; Riparian Zone ; Water Quality
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Hydrology and Hydromechanics, 03/1/2013, Vol.61(1), pp.81-83
    Description: Dissolved organic carbon (DOC) transported by rivers represents an important link between carbon pools of terrestrial and oceanic ecosystems. However, it is unclear how frequent DOC must be sampled to obtain reasonable load estimates. Here, we used continuous records of the specific UV absorption coefficient (SAC) and discharge from a headwater stream at the Ore Mountains (Germany) to calculate load errors depending on DOC sampling frequency. SAC was used as a proxy for DOC. The results show that the load was underestimated by 13-19% with monthly, 10-13% with bi-weekly and 7-9% with weekly DOC samplings, respectively. We conclude that collecting additional data from high discharge events decrease the error significantly.
    Keywords: Geography;
    ISSN: 0042-790X
    E-ISSN: 13384333
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Microbiological Methods, February 2016, Vol.121, pp.8-10
    Description: A method for recovering CO respired by bacterioplankton for analysis of carbon isotopes was adapted for use with standard laboratory equipment without a technically demanding harvest line. The recovered CO was more depleted in C than the dissolved organic carbon (DOC) source, which suggests a selective respiration of older carbon.
    Keywords: Dissolved Organic Carbon (Doc) ; Inorganic Carbon (Ic) ; Degradation ; Carbon Isotopes ; Reservoir ; Biology
    ISSN: 0167-7012
    E-ISSN: 1872-8359
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Plankton Research, 2012, Vol. 34(2), pp.102-112
    Description: Aquatic bacteria are considered to exhibit a paradoxical behaviour. They luxuriously consume phosphorus, the element often restricting the abundance of algae, which provide the organic substrates maintaining bacterial growth. Here, we test the hypothesis that bacteria can limit their uptake of phosphorus and increase the availability of phosphorus to algae. The physiological costs for bacteria must be compensated for by a surplus of photosynthetic exudates facilitating higher biomass production. To test the potential of such an economic behaviour, we used a new differential equation model that was parameterized by independent experiments. Model results indicate that this potential does exist. As a consequence, we conducted continuous growth chemostat experiments. Bacteria did not leave more phosphorus to, “high exudation” algae compared with algae with low release. Therefore, the hypothesis was not supported by the experiments. However, bacteria significantly increased production 1.4–1.8-fold in cultures with “high exudation” algae. This was explained by an increase in conversion of organic carbon from growth medium into bacteria biomass. Algal exudates were quantitatively negligible but could act as growth factors. The results show that biomass of algae and bacteria cannot be predicted solely by mineral nutrients and carbon as assumed by the classical theory.
    Keywords: Bacteria ; Phytoplankton ; Exudation ; Phosphorus ; Differential Equation Model
    ISSN: 0142-7873
    E-ISSN: 1464-3774
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 28 October 2003, Vol.100(22), pp.12776-81
    Description: The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such "mixotrophy" is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.
    Keywords: Food Chain ; Chlamydomonas -- Physiology
    ISSN: 0027-8424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages