Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 07 January 2014, Vol.111(1), pp.409-14
    Description: A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.
    Keywords: Drug Resistance, Neoplasm ; Gene Expression Regulation, Neoplastic ; Antineoplastic Agents, Alkylating -- Pharmacology ; Brain Neoplasms -- Drug Therapy ; Cell Cycle Proteins -- Metabolism ; Glioblastoma -- Drug Therapy ; Glioma -- Drug Therapy ; Intracellular Signaling Peptides and Proteins -- Metabolism ; O(6)-Methylguanine-DNA Methyltransferase -- Pharmacology ; Tor Serine-Threonine Kinases -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The Journal of biological chemistry, 28 May 2010, Vol.285(22), pp.16978-90
    Description: Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr(161) by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr(14) and Tyr(15) phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G(2)/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr(15). In addition, Tyr(15)-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G(2) and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr(161) phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G(2)/M is tightly coupled and regulated by Cdc25 phosphatases.
    Keywords: Cell Division ; G2 Phase ; Cdc2 Protein Kinase -- Metabolism ; Cyclin B -- Metabolism ; Cdc25 Phosphatases -- Metabolism
    ISSN: 00219258
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 01 January 2013, Vol.8(12), p.e82755
    Description: Autoimmune pancreatitis (AIP) is defined by characteristic lymphoplasmacytic infiltrate, ductal strictures and a pancreatic enlargement or mass that can mimic pancreatic cancer (PaCa). The distinction between this benign disease and pancreatic cancer can be challenging. However, an accurate...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: The Journal of biological chemistry, 28 February 2014, Vol.289(9), pp.6236-47
    Description: The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.
    Keywords: Hsp70 ; Hsp90 ; Protein Assembly ; R2tp Complex ; RNA Polymerase II ; Rpap3 ; Small Nucleolar RNA (Snorna) ; Spaghetti Gene ; Tor Complex (Torc) ; Models, Biological ; Drosophila Proteins -- Metabolism ; Hsp70 Heat-Shock Proteins -- Metabolism ; Heat-Shock Proteins -- Metabolism ; Molecular Chaperones -- Metabolism ; Ribonucleoproteins, Small Nucleolar -- Metabolism
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Virology, 2010, Vol. 84(3), p.1355
    Description: Our studies aim to elucidate the functions carried out by the very long, and in its length highly conserved, C-terminal cytoplasmic domain (Env-CT) of the HIV-1 glycoprotein. Mass spectrometric analysis of cellular proteins bound to a tagged version of the HIV Env-CT led to the identification of the prohibitin 1 and 2 proteins (Phb1 and Phb2). These ubiquitously expressed proteins, which exist as stable heterodimers, have been shown to have multiple functions within cells and to localize to multiple cellular and extracellular compartments. The specificity of binding of the Phb1/Phb2 complex to the Env-CT was confirmed in various manners, including coimmunoprecipitation with authentic provirally encoded, full-length Env. Strong binding was dependent on Env residues 790 to 800 and could be severely inhibited by the double mutation L799R/L800Q but not by mutation of these amino acids individually. Analysis of the respective mutant virions revealed that their different abilities to bind Phb1/Phb2 correlated with their replicative properties. Thus, mutated virions with single mutations [HIV-Env-(L799R) and HIV-Env-(L800Q)] replicated similarly to wild-type HIV, but HIV-Env-(L799R/L800Q) virions, which cannot bind Phb1/Phb2, exhibited a cell-dependent replicative phenotype similar to that of HIV-Env-Tr712, lacking the entire Env-CT domain. Thus, replicative spread was achieved, although somewhat delayed, in QUOTATION_MARKpermissiveQUOTATION_MARK MT-4 cells but failed to occur in QUOTATION_MARKnonpermissiveQUOTATION_MARK H9 T cells. These results point to binding of the Phb1/Phb2 complex to the Env-CT as being of importance for replicative spread in nonpermissive cells, possibly by modulating critical Phb-dependent cellular process(es).
    Keywords: Prohibitin ; Virions ; Amino Acids ; Lymphocytes T ; Nonpermissive Cells ; Glycoproteins ; Mutation ; Human Immunodeficiency Virus 1 ; AIDS and HIV;
    ISSN: 0022-538X
    ISSN: 0022538X
    E-ISSN: 10985514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Language: English
    In: Cancer Research, 04/15/2012, Vol.72(8 Supplement), pp.4736-4736
    ISSN: 0008-5472
    E-ISSN: 1538-7445
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Clinical cancer research : an official journal of the American Association for Cancer Research, 01 January 2012, Vol.18(1), pp.105-17
    Description: Recent work points out a role of B7H3, a member of the B7-family of costimulatory proteins, in conveying immunosuppression and enforced invasiveness in a variety of tumor entities. Glioblastoma is armed with effective immunosuppressive properties resulting in an impaired recognition and ineffective attack of tumor cells by the immune system. In addition, extensive and diffuse invasion of tumor cells into the surrounding brain tissue limits the efficacy of local therapies. Here, 4IgB7H3 is assessed as diagnostic and therapeutic target for glioblastoma. To characterize B7H3 in glioblastoma, we conduct analyses not only in glioma cell lines and glioma-initiating cells but also in human glioma tissue specimens. B7H3 expression by tumor and endothelial cells correlates with the grade of malignancy in gliomas and with poor survival. Both soluble 4IgB7H3 in the supernatant of glioma cells and cell-bound 4IgB7H3 are functional and suppress natural killer cell-mediated tumor cell lysis. Gene silencing showed that membrane and soluble 4IgB7H3 convey a proinvasive phenotype in glioma cells and glioma-initiating cells in vitro. These proinvasive and immunosuppressive properties were confirmed in vivo by xenografted 4IgB7H3 gene silenced glioma-initiating cells, which invaded significantly less into the surrounding brain tissue in an orthotopic model and by subcutaneously injected LN-229 cells, which were more susceptible to natural killer cell-mediated cytotoxicity than unsilenced control cells. Because of its immunosuppressive and proinvasive function, 4IgB7H3 may serve as a therapeutic target in the treatment of glioblastoma.
    Keywords: B7 Antigens -- Metabolism ; Cell Movement -- Immunology ; Cytotoxicity, Immunologic -- Immunology ; Glioblastoma -- Immunology ; Killer Cells, Natural -- Immunology
    ISSN: 1078-0432
    E-ISSN: 15573265
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 28 February 1995, Vol.92(5), pp.1749-1753
    Description: RanGAP1 is the GTPase activator for the nuclear Ras-related regulatory protein Ran, converting it to the putatively inactive GDP-bound state. Here, we report the amino acid sequence of RanGAP1, derived from cDNA and peptide sequences. We found it to be homologous to murine Fug1, implicated in early embryonic development, and to Rna1p from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mutations of budding yeast RNA1 are known to result in defects in RNA processing and nucleocytoplasmic mRNA transport. Concurrently, we have isolated Rna1p as the major RanGAP activity from Sc. pombe. Both this protein and recombinant Rna1p were found to stimulate RanGTPase activity to an extent almost identical to that of human RanGAP1, indicating the functional significance of the sequence homology. The Ran-specific guanine nucleotide exchange factor RCC1 and its yeast homologues are restricted to the nucleus, while Rna1p is reported to be localized to the cytoplasm. We suggest a model in which both activities, nuclear GDP-to-GTP exchange on Ran and cytoplasmic hydrolysis of Ran-bound GTP, are essential for shuttling of Ran between the two cellular compartments. Thus, a defect in either of the two antagonistic regulators of Ran would result in a shutdown of Ran-dependent transport processes, in agreement with the almost identical phenotypes described for such defects in budding yeast.
    Keywords: Biological sciences -- Biology -- Cytology ; Physical sciences -- Chemistry -- Chemical compounds ; Biological sciences -- Biology -- Mycology ; Biological sciences -- Biology -- Cytology ; Physical sciences -- Chemistry -- Chemical reactions ; Physical sciences -- Chemistry -- Chemical compounds ; Physical sciences -- Chemistry -- Chemical compounds ; Business -- Business operations -- Commerce ; Physical sciences -- Physics -- Acoustics ; Biological sciences -- Biology -- Cytology
    ISSN: 00278424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: The Journal of Virology, 2004, Vol. 78(24), p.13573
    Description: The molecular biology of spuma or foamy retroviruses is different from that of the other members of the Retroviridae. Among the distinguishing features, the N-terminal domain of the foamy virus Env glycoprotein, the 16-kDa Env leader protein Elp, is a component of released, infectious virions and is required for particle budding. The transmembrane protein Elp specifically interacts with N-terminal Gag sequences during morphogenesis. In this study, we investigate the mechanism of Elp release from the Env precursor protein. By a combination of genetic, biochemical, and biophysical methods, we show that the feline foamy virus (FFV) Elp is released by a cellular furin-like protease, most likely furin itself, generating an Elp protein consisting of 127 amino acid residues. The cleavage site fully conforms to the rules for an optimal furin site. Proteolytic processing at the furin cleavage site is required for full infectivity of FFV. However, utilization of other furin proteases and/or cleavage at a suboptimal signal peptidase cleavage site can partially rescue virus viability. In addition, we show that FFV Elp carries an N-linked oligosaccharide that is not conserved among the known foamy viruses.
    Keywords: Biology;
    ISSN: 0022-538X
    ISSN: 0022538X
    E-ISSN: 10985514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages