Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Global change biology, February 2014, Vol.20(2), pp.653-65
    Description: Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.
    Keywords: Co2 Mitigation ; Agricultural Management ; Climate Change ; Soil Fractionation ; Soil Organic Carbon Stocks ; Stabilization of Soil Organic Matter ; Agriculture ; Carbon Sequestration ; Ecosystem ; Soil -- Chemistry
    ISSN: 13541013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Forest Ecology and Management, 01 May 2013, Vol.295, pp.162-172
    Description: ► SOC storage and its drivers of different forest types in Bavaria were investigated. ► No SOC differences were found between broadleaf, coniferous and mixed forests. ► Temperature and precipitation controlled total SOC storage in forests. ► No decrease of mineral SOC of broadleaf/mixed forests in regions with high temperatures. ► Incorporation of broadleaf species to prevent future SOC losses of coniferous forests. Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1 m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8 kg m which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change.
    Keywords: Tree Species Effect ; Soil Organic Matter ; Climate Change ; Forest Management ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Forest ecology and management, 2013, Vol.295, pp.162-172
    Description: Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8kgm⁻² which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change. ; p. 162-172.
    Keywords: Soil Organic Carbon ; Coniferous Forests ; Parents ; Carbon Sequestration ; Soil Profiles ; Mineral Soils ; Environmental Impact ; Statistical Analysis ; Climate Change ; Temperature ; Temperate Soils ; Inventories ; Soil Properties ; Carbon ; Forest Fires ; Climate
    ISSN: 0378-1127
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Soil Biology and Biochemistry, March 2013, Vol.58, pp.323-331
    Description: Our main objective was to trace and to quantify the stabilization of nitrogen released from litter decomposition in different functional soil organic matter fractions. To identify the fate of nitrogen in a free-range experiment, N-labeled beech litter was deposited on the bare soil surface of three 2 m × 2 m plots on a Rendzic Leptosol under beech ( L.) with mull humus form near Tuttlingen (Swabian Jura, Germany). The N composition of bulk soil and soil fractions was monitored for three years by sampling the litter layer and the Ah horizon (0–5, 5–10 cm) after 140, 507, and 876 d. A combined density and particle size fractionation procedure allowed the isolation of different functional soil organic matter fractions: free light fraction, occluded organic matter, and organo-mineral associations. The first flush in the N enrichment was observed in the bulk soil within 140 d, due to plant debris transferred to the free light fraction by probably bioturbation and soluble compounds being leached from the litter directly to the clay fractions. The observed rates within the first 140 d indicated a quick transfer of N-enriched compounds from litter into the free light fraction, with a rate of 0.07 μg kg  d , and to the clay fractions, with a rate of 0.31 μg kg  d . In contrast, transfer to the occluded light fractions was delayed, with rates of 0.01 μg kg  d (〉 20 μm) and 0.001 μg kg  d (〈 20 μm), respectively. After 876 d, we recovered 9% of the added label in the 0–10 cm soil horizon, of which more than 4% was found in the organo-mineral fraction (0–5 cm), nearly 3% in the light fractions (0–5 cm), and another 2% unspecified in the bulk soil of 5–10 cm depth. We therefore conclude that the clay fractions act as the main sink for the recovered N. The rapid incorporation and the high preservation of N in the clay fractions revealed the dominant role of organo-mineral associations in the stabilization of nitrogen in the investigated soil. ► Rapid transfer of N from litter into the clay fractions completed within 140 days. ► Dominant role of fine organo-mineral associations for stabilization of nitrogen. ► Occluded organic matter is protected by slow aggregate turnover. ► After 876 d, we recovered 9% of the added N label in the mineral soil (0–10 cm).
    Keywords: 15n ; Physical Fractionation ; Light Fraction ; Organo-Mineral Fraction ; Clay ; Fagus Sylvatica L ; Nitrogen Storage ; Field Experiment ; Transfer Rates ; Decomposition ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Soil Biology and Biochemistry, January 2014, Vol.68, pp.241-251
    Description: Prolonged summer droughts are projected to occur as a consequence of climate change in Central Europe. The resulting reduced soil water availability may lead to alterations in rates of soil processes such as nitrogen partitioning among soil organic matter fractions and stabilization within soil. To study the effect of climate change-induced drought on (1) the distribution of nitrogen among soil organic matter fractions and (2) nitrogen stabilization, we performed a space-for-time climate change experiment. We transferred intact plant–soil–microbe mesocosms of a Rendzic Leptosol with a young beech tree from a slope with northwestern exposure in southern Germany characterized by a cool-moist microclimate across a narrow valley to a slope with southwestern exposure with a warm-dry microclimate, which reflects projected future climatic conditions. A control transfer was also done on the northwest-facing slope within the same area of origin. We combined a homogenous N labeling approach using ammonium nitrate with a physical fractionation procedure and chemical soil extraction protocols. Our aim was to follow the partitioning of N in different soil organic matter fractions, i.e. light fractions, organo-mineral fractions, and extractable soil fractions including microbial biomass, ammonium, nitrate, and dissolved organic nitrogen. Within less than one growing season, we observed a modified partitioning of recently applied inorganic N between different soil fractions in relation to drier summer conditions, with attenuated nitrogen turnover under drought and consequently significantly higher N concentrations in the relatively labile light fractions. We ascribed this effect to a decelerated mineralization immobilization turnover. We conclude that prolonged summer droughts may alter the stabilization dynamics because the induced inactivity of microorganisms may reduce the transfer of nitrogen to stabilization pathways. A retarded stabilization in organo-mineral associations enhances the risk of nitrogen losses during extreme rainfall events, which are projected to increase in the 21st century predicted by future climate change scenarios for Central Europe.
    Keywords: Nitrogen Stabilization ; Density Fractionation ; 15n Labeling ; Climate Change ; Fagus Sylvatica L ; Field Experiment ; Light Fraction ; Microbial Biomass ; Mineralization Immobilization Turnover ; Transplant Study ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Soil biology & biochemistry, 2013, Vol.58, pp.323-331
    Description: Our main objective was to trace and to quantify the stabilization of nitrogen released from litter decomposition in different functional soil organic matter fractions. To identify the fate of nitrogen in a free-range experiment, ¹⁵N-labeled beech litter was deposited on the bare soil surface of three 2 m × 2 m plots on a Rendzic Leptosol under beech (Fagus sylvatica L.) with mull humus form near Tuttlingen (Swabian Jura, Germany). The ¹⁵N composition of bulk soil and soil fractions was monitored for three years by sampling the litter layer and the Ah horizon (0–5, 5–10 cm) after 140, 507, and 876 d. A combined density and particle size fractionation procedure allowed the isolation of different functional soil organic matter fractions: free light fraction, occluded organic matter, and organo-mineral associations. The first flush in the ¹⁵N enrichment was observed in the bulk soil within 140 d, due to plant debris transferred to the free light fraction by probably bioturbation and soluble compounds being leached from the litter directly to the clay fractions. The observed rates within the first 140 d indicated a quick transfer of ¹⁵N-enriched compounds from litter into the free light fraction, with a rate of 0.07 μg kg⁻¹ d⁻¹, and to the clay fractions, with a rate of 0.31 μg kg⁻¹ d⁻¹. In contrast, transfer to the occluded light fractions was delayed, with rates of 0.01 μg kg⁻¹ d⁻¹ (〉 20 μm) and 0.001 μg kg⁻¹ d⁻¹ (〈 20 μm), respectively. After 876 d, we recovered 9% of the added label in the 0–10 cm soil horizon, of which more than 4% was found in the organo-mineral fraction (0–5 cm), nearly 3% in the light fractions (0–5 cm), and another 2% unspecified in the bulk soil of 5–10 cm depth. We therefore conclude that the clay fractions act as the main sink for the recovered ¹⁵N. The rapid incorporation and the high preservation of ¹⁵N in the clay fractions revealed the dominant role of organo-mineral associations in the stabilization of nitrogen in the investigated soil. ; p. 323-331.
    Keywords: Clay ; Particle Size ; Humus ; Fagus Sylvatica ; Organic Matter ; Mull ; Leptosols ; Bioturbation ; Plant Litter ; Fractionation ; Nitrogen
    ISSN: 0038-0717
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Soil Biology and Biochemistry, November 2014, Vol.78, pp.263-273
    Description: To better understand how carbon and nitrogen mineralization are linked in soils, we conducted a long-term incubation experiment and compared carbon and nitrogen dynamics in the bulk soil and in soil fractions. Topsoil of a Rendzic Leptosol from a beech forest site near Tuttlingen, Germany, was separated into three particle size classes: sand (2000–20 μm), silt (20–2 μm), and clay (〈2 μm). Bulk soil and particle size fractions were incubated in replicate, allowing periodic destructive sampling of triplicates at day 0, 14, 42, 84, 140, 210, and 280. We monitored CO –C respiration, NH –N emissions, nitrogen mineralization, pool sizes of total and salt extractable (0.01 M CaCl ) organic carbon and nitrogen, and microbial biomass carbon and nitrogen. The chemical composition of selected samples was further characterized by C-NMR spectroscopy. Fractionation did not influence carbon mineralization (∑ fractions ≈ bulk soil), which decreased in the order sand 〉 clay 〉 silt. The fractions respired between 10.4% (sand fraction), 8.8% (clay fraction) and 4.4% (silt fraction) of total soil organic carbon. However, nitrogen mineralization was affected by the fractionation procedure (∑ fractions 〈 bulk soil) and followed the order clay 〉 silt 〉 sand. Fractionation increased the surface area and hence provided accessory mineral surfaces, which allowed new binding of especially nitrogen-rich compounds, in addition to ammonium fixation via cation exchange. As indicated by lower metabolic quotients, microbial carbon mineralization was more efficient in the bulk soil compared to the calculated sum of fractions. In the clay fraction, carbon mineralization rates, salt extractable organic carbon contents, and microbial biomass carbon and nitrogen contents declined strongly towards the end of the incubation. This indicates that in the clay fraction, organic carbon was not available for microbial degradation and that microorganisms were strongly carbon-limited causing a subsequent inhibition of nitrogen immobilization. Density fractionation revealed that organic matter in the sand fraction consisted mainly of particulate organic matter present as light material containing partly decomposed plant remnants. The organic matter in the clay fraction was mostly adsorbed on mineral surfaces. Organic matter in the sand and in the clay fraction was dominated by O/N-alkyl C indicating low recalcitrance, but the C/N ratio of organic matter narrowed with decreasing particle size. Our results suggest that carbon and nitrogen mineralization are decoupled in the mineral-associated fractions of the soil. The specific interactions of both carbon and nitrogen containing components with the mineral matrix strongly modulate the mineralization dynamics. Therefore, isolated considerations of C/N or alkyl C to O/N-alkyl C ratios of organic matter are insufficient as indicators for decomposition in plant residues. The combined consideration of C/N and alkyl C to O/N-alkyl C ratios provides a first impression about the degree of decomposition in plant residues. However, bioavailability in fractions where organic matter is mainly stabilized by spatial inaccessibility and by organo-mineral interactions cannot be explained by these ratios, but can be examined by an incubation approach.
    Keywords: Laboratory Incubation ; Som Stabilization ; Rendzic Leptosol ; European Beech ; Heterotrophic Respiration ; NMR ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Biology and fertility of soils, 2014, Vol.50(1), pp.147-153
    Description: Present concepts emphasize that substrate quality exerts an important control over substrate decomposability and temperature sensitivity of heterotrophic soil respiration (Rh). In this context, soil organic matter (SOM) quality is defined by its molecular and structural complexity and determines the ease by which substrate is oxidized. However, temperature not only affects SOM oxidation rates but also equally the physiology of soil microorganisms, making it difficult to use respiration rates as indicative for the quality inherent to a substrate. One way to distinguish these two would be to measure organic matter oxidation by controlled combustion and to compare the temperature sensitivity of this chemical process to that of enzyme-catalyzed microbial respiration. We analyzed reaction rates, thermal stability indices, and activation energies (Ea) during (i) microbial respiration (EaRₕ) and (ii) controlled combustion by differential scanning calorimetry (DSC) (EaDSC) of the same set of mineral and organic soils. A high thermal stability coincided with small heterotrophic respiration rates, indicating that thermal stability may be useful as a proxy for biological degradability. Under ambient conditions, enzymes greatly reduced Ea on average from 136 (EaDSC) to 87 (EaRₕ) kJ mol⁻¹, thereby increasing CO₂ release by a factor of 1.5 * 10⁷ relative to the noncatalyzed chemical reaction. However, temperature dependency of chemical and microbial oxidation was not correlated, suggesting that they are determined by different sample properties. A high temperature sensitivity of microbial respiration is linked to parameters independent of chemical oxidizability, in our case, organic matter C/N ratio and soil pH. These factors are important controls for microbial, but not for chemical, oxidation. ; p. 147-153.
    Keywords: Soil Respiration ; Soil Ph ; Soil Microorganisms ; Thermal Stability ; Organic Soils ; Soil Organic Matter ; Differential Scanning Calorimetry ; Organic Matter ; Combustion ; Enzymes ; Temperature ; Carbon Dioxide
    ISSN: 0178-2762
    E-ISSN: 14320789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Agriculture, ecosystems & environment, 2013, Vol.176, pp.39-52
    Description: Agricultural soils have a high potential for sequestration of atmospheric carbon due to their volume and several promising management options. However, there is a remarkable lack of information about the status quo of organic carbon in agricultural soils. In this study a comprehensive data set of 384 cropland soils and 333 grassland soils within the state of Bavaria in southeast Germany was analyzed in order to provide representative information on total amount, regional distribution and driving parameters of soil organic carbon (SOC) and nitrogen (N) in agricultural soils of central Europe. The results showed that grassland soils stored higher amounts of SOC (11.8kgm⁻²) and N (0.92kgm⁻²) than cropland soils (9.0 and 0.66kgm⁻², respectively) due to moisture-induced accumulation of soil organic matter (SOM) in B horizons. Surprisingly, no distinct differences were found for the A horizons since tillage led to a relocation of SOM with depth in cropland soils. Statistical analyses of driving factors for SOM storage revealed soil moisture, represented by the topographic wetness index (TWI), as the most important parameter for both cropland and grassland soils. Climate effects (mean annual temperature and precipitation) were of minor importance in agricultural soils because management options counteracted them to a certain extent, particularly in cropland soils. The distribution of SOC and N stocks within Bavaria based on agricultural regions confirmed the importance of soil moisture since the highest cropland SOC and N stocks were found for tertiary hills and loess regions, which exhibited large areas with potentially high soil moisture content in extant floodplains. Grassland soils showed the highest accumulation of SOC and N in the Alps and Pre-Alps as a result of low temperatures, high amounts of precipitation and high soil moisture content in areas of glacial denudation. Soil class was identified as a further driving parameter for SOC and N storage in cropland soils. In total, cropland and grassland soils in Bavaria store 242 and 134Mt SOC as well as 19 and 12Mt N down to a soil depth of 1m or the parent material, respectively. ; p. 39-52.
    Keywords: Soil Organic Carbon ; A Horizons ; Hills ; Parents ; Soil Water Content ; Carbon Sequestration ; Agricultural Soils ; Floodplains ; Statistical Analysis ; Agricultural Land ; Atmospheric Precipitation ; Temperature ; Nitrogen ; Soil Water ; Soil Depth ; B Horizons ; Grassland Soils ; Tillage ; Climate
    ISSN: 0167-8809
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Agriculture, Ecosystems and Environment, 15 August 2013, Vol.176, pp.39-52
    Description: Agricultural soils have a high potential for sequestration of atmospheric carbon due to their volume and several promising management options. However, there is a remarkable lack of information about the of organic carbon in agricultural soils. In this study a comprehensive data set of 384 cropland soils and 333 grassland soils within the state of Bavaria in southeast Germany was analyzed in order to provide representative information on total amount, regional distribution and driving parameters of soil organic carbon (SOC) and nitrogen (N) in agricultural soils of central Europe. The results showed that grassland soils stored higher amounts of SOC (11.8 kg m ) and N (0.92 kg m ) than cropland soils (9.0 and 0.66 kg m , respectively) due to moisture-induced accumulation of soil organic matter (SOM) in B horizons. Surprisingly, no distinct differences were found for the A horizons since tillage led to a relocation of SOM with depth in cropland soils. Statistical analyses of driving factors for SOM storage revealed soil moisture, represented by the topographic wetness index (TWI), as the most important parameter for both cropland and grassland soils. Climate effects (mean annual temperature and precipitation) were of minor importance in agricultural soils because management options counteracted them to a certain extent, particularly in cropland soils. The distribution of SOC and N stocks within Bavaria based on agricultural regions confirmed the importance of soil moisture since the highest cropland SOC and N stocks were found for tertiary hills and loess regions, which exhibited large areas with potentially high soil moisture content in extant floodplains. Grassland soils showed the highest accumulation of SOC and N in the Alps and Pre-Alps as a result of low temperatures, high amounts of precipitation and high soil moisture content in areas of glacial denudation. Soil class was identified as a further driving parameter for SOC and N storage in cropland soils. In total, cropland and grassland soils in Bavaria store 242 and 134 Mt SOC as well as 19 and 12 Mt N down to a soil depth of 1 m or the parent material, respectively.
    Keywords: Soil Organic Carbon Stocks ; Topographic Wetness Index (Twi) ; Soil Moisture ; Carbon Sequestration ; Agricultural Soils ; Agriculture ; Environmental Sciences
    ISSN: 0167-8809
    E-ISSN: 1873-2305
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages