Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 01 July 2014, Vol.111(26), pp.9549-54
    Description: Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.
    Keywords: Ecological Data ; Effect Thresholds ; River Basins ; Streams ; Toxicity ; Ecosystem ; Fresh Water ; Environmental Monitoring -- Statistics & Numerical Data ; Organic Chemicals -- Analysis ; Risk Assessment -- Statistics & Numerical Data ; Water Pollutants, Chemical -- Analysis
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental science & technology, 15 February 2011, Vol.45(4), pp.1665-72
    Description: Grab water samples, sediment samples, and 2,2,4-trimethylpentane passive samplers (TRIMPS) were used to determine the exposure to 97 pesticides in 24 southeast Australian stream sites over 5 months. Macroinvertebrate communities and selected microorganisms (bacteria, flagellates, ciliates, amoebas, nematodes, and gastrotrichs) were sampled to detect relationships with pesticide toxicity. Sediment samples had the highest estimated toxicities in terms of toxic units (TU) for Daphnia magna (TUDM) and for Selenastrum capricornutum (TUSC). The pesticide-selective SPEARpesticides and the general SIGNAL index for macroinvertebrates exhibited negative linear relationships (r(2) = 0.67 and 0.36, respectively) with pesticide contamination in terms of log maximum TUDM (log mTUDM), suggesting macroinvertebrate community change due to pesticide exposure. Pesticide contamination was the only measured variable explaining variation in ecological quality. Variation in the densities of several microbial groups was best explained by environmental variables other than log TUs. The log mTUDM values derived from sediment concentrations were most important to establish a link with effects on macroinvertebrates, whereas log mTUDM of grab water samples had only minor contribution. Current-use insecticides and fungicides can affect macroinvertebrate communities and monitoring of sediment and continuous water sampling is needed to detect these effects.
    Keywords: Invertebrates -- Drug Effects ; Pesticides -- Toxicity ; Water Pollutants, Chemical -- Toxicity
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecological Applications, June 2016, Vol.26(4), pp.1249-1259
    Description: Ecological risk assessment depends strongly on species sensitivity data. Typically, sensitivity data are based on laboratory toxicity bioassays, which for practical constraints cannot be exhaustively performed for all species and chemicals available. Bilinear models integrating phylogenetic information of species and physicochemical properties of compounds allow to predict species sensitivity to chemicals. Combining the molecular information ( sequences) of 31 invertebrate species with the physicochemical properties of six bivalent metals, we built bilinear models that explained 70–80% of the variability in species sensitivity to heavy metals. Phylogeny was the most important component of the bilinear models, as it explained the major part of the explained variance (〉40%). Predicted values from bilinear modeling were in agreement with experimental values (〉50%); therefore, this approach is a good starting point to build statistical models which can potentially predict heavy metal toxicity for untested invertebrate species based on empirical values for similar species. Despite their good performance, development of the presented bilinear models would benefit from improved phylogenetic and toxicological datasets. Our analysis is an example for linking evolutionary biology with applied ecotoxicology. Its future applications may encompass other stress factors or traits influencing the survival of aquatic organisms in polluted environments.
    Keywords: Acute Toxicity ; Aquatic Invertebrates ; Ecotoxicology ; Evolutionary Biology ; Lc 50 ; Molecular Data ; Phylogenetic Modeling ; Phylogenetic Tree
    ISSN: 1051-0761
    E-ISSN: 1939-5582
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental science & technology, 16 July 2013, Vol.47(14), pp.7996-8004
    Description: Reliable characterization of exposure is indispensable for ecological risk assessment of chemicals. To deal with mixtures, several approaches have been developed, but their relevance for predicting ecological effects on communities in the field has not been elucidated. In the present study, we compared nine metrics designed for estimating the total toxicity of mixtures regarding their relationship with an effect metric for stream macroinvertebrates. This was done using monitoring data of biota and organic chemicals, mainly pesticides, from five studies comprising 102 streams in several regions of Europe and South-East Australia. Mixtures of less than 10 pesticides per water sample were most common for concurrent exposure. Exposure metrics based on the 5% fraction of a species sensitivity distribution performed best, closely followed by metrics based on the most sensitive species and Daphnia magna as benchmark. Considering only the compound with the highest toxicity and ignoring mixture toxicity was sufficient to estimate toxicity in predominantly agricultural regions with pesticide exposure. The multisubstance Potentially Affected Fraction (msPAF) that combines concentration and response addition was advantageous in the study where further organic toxicants occurred. We give recommendations on exposure metric selection depending on data availability and the involved compounds.
    Keywords: Water Pollutants, Chemical -- Toxicity
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science of the Total Environment, 01 April 2013, Vol.449, pp.199-207
    Description: Sediment contamination is one of the most pressing environmental problems in estuaries of industrialized countries and is of special interest to water managers involved in waterway maintenance dredging. In the present study, eight heavy metals (As, Pb, Cd, Cr, Cu, Ni, Hg, and Zn) and 41 organic compounds (pentachlorbenzol (PeCB), hexachlorbenzol (HCB), 7 polychlorinated biphenyls (PCBs), the hexachlorocyclohexanes α-HCH, β-HCH, γ-HCH, 6 dichlorodiphenyltrichloroethane isomers, organochlorine styrene (OCS), octachloronaphthalene (OCN), 15 polycyclic aromatic hydrocarbons (PAHs), and 6 organotin (OT) compounds) were analyzed in surface sediments at 36 sites in the Elbe estuary in 2006. Correlation analysis showed a general decrease in sediment contaminant concentrations from the stations near the port of Hamburg towards the open sea. This decrease was significant (Spearman's rank correlation, p 〈 0.05) with most pollutants. In addition, cluster analysis identified five groups of sites with different sediment contaminant patterns within the Elbe estuary. Worst case toxic risks stemming from sediment-bound organic pollutants were predicted using the Toxic Unit approach, based on estimated pore-water concentrations under equilibrium conditions and acute LC50 values for three standard test organisms of the trophic levels of fish, invertebrates, and algae. The estimated sediment toxicity was significantly higher in the inner part (river-km 630 to 660) compared with the estuarine mouth. Moreover, potential toxicity of organic pollutants estimated for invertebrates and for fish exceeded acute-based effect thresholds at 30 and 24 stations, respectively. Chronic effects for invertebrates are expected at all sites investigated. We conclude that sediment pollution and related potential toxicity in the Elbe estuary may have more influence on the benthos fauna than expected to date. ► Eight heavy metals and 41 organic compounds were measured in the Elbe estuary. ► Toxic Units were calculated for fish, invertebrates, and algae. ► Acute effects on invertebrates and fish are to be expected at 30 and 24 stations. ► Sediment pollution in the Elbe estuary probably influences the benthos fauna.
    Keywords: Toxic Units ; Water Framework Directive ; Sediment Pollution ; Macrofauna ; Fish ; Algae ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 15 November 2017, Vol.598, pp.805-813
    Description: Incomplete removal during wastewater treatment leads to frequent detection of compounds such as pharmaceuticals and personal care products in municipal effluents. A fixed standard dilution factor of 10 for effluents entering receiving water bodies is used during the exposure assessment of several chemical risk assessments. However, the dilution potential of German receiving waters under low flow conditions is largely unknown and information is sparse for other European countries. We calculated dilution factors for two datasets differing in spatial extent and wastewater treatment plant (WWTP) size: a national dataset comprising 1225 large WWTPs in Central and Northern Germany and a federal dataset for 678 WWTPs of a single state in Southwest Germany. We found that the fixed factor approach overestimates the dilution potential of 60% and 40% of receiving waters in the national and the federal dataset, with median dilution factors of 5 and 14.5, respectively. Under mean flow conditions, 8% of calculated dilution factors were below 10, with a median dilution factor of 106. We also calculated regional dilution factors that accounted for effluent inputs from upstream WWTPs. For the national and the federal dataset, 70% and 60% of calculated regional dilution factors fell below 10 under mean low flow conditions, respectively. Decrease of regional dilution potential in small receiving streams was mainly driven by the next WWTP upstream with a 2.5 fold drop of median regional dilution factors. Our results show that using the standard dilution factor of 10 would result in the underestimation of environmental concentrations for authorised chemicals by a factor of 3–5 for about 10% of WWTPs, especially during low flow conditions. Consequently, measured environmental concentrations might exceed predicted environmental concentrations and ecological risks posed by effluents could be much higher, suggesting that a revision of current risk assessment practices may be required.
    Keywords: Municipal Effluents ; Pharmaceuticals ; Personal Care Products ; Exposure Assessment ; Receiving Waters ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 2011, Vol.409(11), pp.2064-2077
    Description: Given the huge number of chemicals released into the environment and existing time and budget constraints, there is a need to prioritize chemicals for risk assessment and monitoring in the context of the European Union Water Framework Directive (EU WFD). This study is the first to assess...
    Keywords: Environmental Sciences ; Pnecacute ; Pnecchronic ; P-Pnec ; Prioritization ; River Basin Specific Pollutants ; Pesticides ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 2012, Vol.415, pp.69-78
    Description: Effects of anthropogenic and environmental stressors on freshwater communities can propagate to ecosystem functions and may in turn impede ecosystem services. We investigated potential shifts in ecosystem functions that provide energy for freshwater ecosystems due to pesticides and salinity in 24 sites in streams of southeast Australia. First, effects on allochthonous organic matter (AOM) breakdown using three different substrates (leaves, cotton strips, wood sticks) in coarse and fine bags were investigated. Second, we examined effects on stream metabolism that delivers information on the ecosystem functions of gross primary production and ecosystem respiration. We found up to a fourfold reduction in AOM breakdown due to exposure to pesticides and salinity, where both stressors contributed approximately equally to the reduction. The effect was additive as, no interaction or correlation between the two stressors was found. Leaf breakdown responded strongly and exclusively to exposure to pesticides and salinity, whereas cotton strip breakdown was less sensitive and responded also to other stressors such as nutrients. No functional redundancy for the effects of pesticides and salinity on leaf breakdown was observed. For wood stick breakdown, no relationship to environmental gradients was found, however, the sample size was lower. We did not detect effects of pesticides or salinity on gross primary production or ecosystem respiration. A reduction in AOM breakdown by pesticides and salinity may impair the ecosystem services of food provision and possibly water purification. Hence, future studies should examine the spatial extent of these effects. ► We investigated effects of pesticides and salinisation on ecosystem functions. ► Organic matter breakdown responded to pesticides and salinity. ► Leaf breakdown responded stronger than cotton or wood breakdown. ► Stream metabolism showed no relationship to both stressors. ► Pesticides and salinity may impact ecosystem services.
    Keywords: Macroinvertebrates ; Microorganisms ; Water Quality ; Organic Matter ; Pollution ; Rivers ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Chemosphere, 2007, Vol.68(11), pp.2161-2171
    Description: Surface runoff is one of the most important pathways for pesticides to enter surface waters. Mathematical models are employed to characterize its spatio-temporal variability within landscapes, but they must be simple owing to the limited availability and low resolution of data at this scale. This study aimed to validate a simplified spatially-explicit model that is developed for the regional scale to calculate the runoff potential (RP). The RP is a generic indicator of the magnitude of pesticide inputs into streams via runoff. The underlying runoff model considers key environmental factors affecting runoff (precipitation, topography, land use, and soil characteristics), but predicts losses of a generic substance instead of any one pesticide. We predicted and evaluated RP for 20 small streams. RP input data were extracted from governmental databases. Pesticide measurements from a triennial study were used for validation. Measured pesticide concentrations were standardized by the applied mass per catchment and the water solubility of the relevant compounds. The maximum standardized concentration per site and year (runoff loss, ) provided a generalized measure of observed pesticide inputs into the streams. Average RP explained 75% ( 〈 0.001) of the variance in . Our results imply that the generic indicator can give an adequate estimate of runoff inputs into small streams, wherever data of similar resolution are available. Therefore, we suggest RP for a first quick and cost-effective location of potential runoff hot spots at the landscape level.
    Keywords: Monitoring ; Modeling ; Evaluation ; Gis ; Landscape Level ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Science of the Total Environment, 15 January 2017, Vol.576, pp.720-737
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2016.10.104 Byline: Werner Brack, Valeria Dulio, Marlene Agerstrand, Ian Allan, Rolf Altenburger, Markus Brinkmann, Dirk Bunke, Robert M. Burgess, Ian Cousins, Beate I. Escher, Felix J. Hernandez, L. Mark Hewitt, Klara Hilscherova, Juliane Hollender, Henner Hollert, Robert Kase, Bernd Klauer, Claudia Lindim, David Lopez Herraez, Cecil Miege, John Munthe, Simon O'Toole, Leo Posthuma, Heinz Rudel, Ralf B. Schafer, Manfred Sengl, Foppe Smedes, Dik van de Meent, Paul J. van den Brink, Jos van Gils, Annemarie P. van Wezel, A. Dick Vethaak, Etienne Vermeirssen, Peter C. von der Ohe, Branislav Vrana Abstract: Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment. Article History: Received 16 August 2016; Revised 14 October 2016; Accepted 15 October 2016 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Water Framework Directive Review ; Effect-Based Tools ; Passive Sampling ; Prioritization of Contaminants ; Solution-Oriented Management ; Chemical Legislation ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages