Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 01 February 2011, Vol.108(5), pp.2124-9
    Description: There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.
    Keywords: Transcription, Genetic ; Synechocystis -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 2011, Vol.108(5), pp.2124-2129
    Description: There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ~64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research. ; Includes references ; p. 2124-2129.
    Keywords: Transcription (Genetics) -- Physiological Aspects ; Cyanobacteria -- Genetic Aspects ; Genetic Regulation -- Research ; Rna Polymerases -- Properties;
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Plant physiology, February 2011, Vol.155(2), pp.892-905
    Description: Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins.
    Keywords: Gene Expression Regulation, Plant ; Chlamydomonas Reinhardtii -- Genetics ; Hemin -- Pharmacology ; Protoporphyrins -- Pharmacology
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant physiology, December 2016, Vol.172(4), pp.2314-2326
    Description: Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway.
    Keywords: 5' Untranslated Regions -- Genetics ; Alternative Splicing -- Genetics ; Arabidopsis -- Enzymology ; Arabidopsis Proteins -- Genetics ; Carotenoids -- Biosynthesis ; Multienzyme Complexes -- Genetics ; Protein Biosynthesis -- Genetics
    ISSN: 00320889
    E-ISSN: 1532-2548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: BMC bioinformatics, 28 February 2014, Vol.15, pp.60
    Description: RNA molecules, especially non-coding RNAs, play vital roles in the cell and their biological functions are mostly determined by structural properties. Often, these properties are related to dynamic changes in the structure, as in the case of riboswitches, and thus the analysis of RNA folding kinetics is crucial for their study. Exact approaches to kinetic folding are computationally expensive and, thus, limited to short sequences. In a previous study, we introduced a position-specific abstraction based on helices which we termed helix index shapes (hishapes) and a hishape-based algorithm for near-optimal folding pathway computation, called HiPath. The combination of these approaches provides an abstract view of the folding space that offers information about the global features. In this paper we present HiKinetics, an algorithm that can predict RNA folding kinetics for sequences up to several hundred nucleotides long. This algorithm is based on RNAHeliCes, which decomposes the folding space into abstract classes, namely hishapes, and an improved version of HiPath, namely HiPath2, which estimates plausible folding pathways that connect these classes. Furthermore, we analyse the relationship of hishapes to locally optimal structures, the results of which strengthen the use of the hishape abstraction for studying folding kinetics. Finally, we show the application of HiKinetics to the folding kinetics of two well-studied RNAs. HiKinetics can calculate kinetic folding based on a novel hishape decomposition. HiKinetics, together with HiPath2 and RNAHeliCes, is available for download at http://www.cyanolab.de/software/RNAHeliCes.htm.
    Keywords: Nucleic Acid Conformation ; RNA Folding ; Computational Biology -- Methods ; RNA -- Chemistry ; Sequence Analysis, RNA -- Methods
    E-ISSN: 1471-2105
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Molecular Biology, 2010, Vol.398(2), pp.177-188
    Description: In response to nitrogen deficiency, some cyanobacteria develop heterocysts, a terminally differentiated cell type, specialized for the fixation of atmospheric nitrogen. In Nostocales, this differentiation process is controlled by two major regulators, NtcA and HetR, but additional unknown factors are likely to be involved as well. In the context of a genome-wide search for potential non-coding RNAs, we identified an array of 12 tandem repeats that is transcribed in large amounts when cells enter conditions that trigger cell differentiation and switch to nitrogen fixation. The main accumulating transcript, which we suggest designating nitrogen stress-induced RNA 1 (NsiR1), has properties similar to regulatory non-coding RNAs. In sp. PCC 7120, it is about 60 nt in length, has a very distinct predicted secondary structure, and is expressed very early and transiently after nitrogen step-down. Moreover, its expression requires HetR and NtcA and is restricted to cells that are differentiating into heterocysts, clearly placing NsiR1 within the regulon that controls the switch to nitrogen fixation and heterocyst formation. The genomic arrangement of NsiR1, located upstream of , a gene whose product is involved in heterocyst formation, is conserved in all five Nostocales whose genomes are completely sequenced. Additionally, we detected NsiR1 expression in 19 different heterocyst-forming cyanobacteria. Our data suggest that every repeat is a complete transcriptional unit furnished with a cell-type-specific promoter and a Rho-independent terminator, which gives rise to a very high NsiR1 transcript level. NsiR1 is the first known bacterial non-coding RNA that is specifically upregulated in response to nitrogen step-down.
    Keywords: Cell Differentiation ; Cyanobacteria ; Non-Coding Rnas ; Heterocysts ; Nitrogen Fixation ; Biology ; Chemistry
    ISSN: 0022-2836
    E-ISSN: 1089-8638
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: The ISME Journal, 2012, Vol.6(8), p.1544
    Description: Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.
    Keywords: Genomes ; RNA ; Profiling ; Climate Change ; Phytoplankton ; Environmental Factors ; Genomes ; Data Processing ; Islands ; Oceans ; Non-Coding RNA ; Stress ; Genomics ; Iron ; Light Effects ; Models ; Cyanobacteria ; Synechococcus ; Prochlorococcus ; Cell Biology ; Methods ; Behaviour ; Viruses, Bacteria, Protists, Fungi and Plants;
    ISSN: 1751-7362
    E-ISSN: 17517370
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: BMC bioinformatics, 29 April 2014, Vol.15, pp.122
    Description: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. We present RNAseg, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics.
    Keywords: Algorithms ; Gene Expression Profiling -- Methods ; Sequence Analysis, RNA -- Methods
    E-ISSN: 1471-2105
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Article
    Article
    Language: English
    In: Nucleic acids research, 2006, Vol.34(19), pp.5471-81
    Description: The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de.
    Keywords: Sequence Analysis, RNA ; Software ; RNA, Untranslated -- Chemistry ; Sequence Alignment -- Methods
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Bioinformatics, 2016, Vol. 32(22), pp.3525-3527
    Description: Motivation: We developed V isual G raph X, a web-based, interactive visualization tool for large-scale graphs. Current graph visualization tools that follow the rich-internet paradigm lack an interactive and scalable visualization of graph-based data. V isual G raph X aims to provide a universal graph visualization tool that empowers the users to efficiently explore the data for themselves at a large scale. It is available as a visualization plugin for the Galaxy platform, such that V isual G raph X can be integrated into custom analysis pipelines. Availability and Implementation: V isual G raph X has been released as a visualization plugin for the Galaxy platform under AFL 3.0 and is available with instructions and application data at http://gitlab.com/comptrans/VisualGraphX/ . Contact: bjoern.voss@ibvt.uni-stuttgart.de
    Keywords: Biology;
    ISSN: 1367-4803
    ISSN: 13674811
    E-ISSN: 1460-2059
    E-ISSN: 13674811
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages