Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 12 November 2013, Vol.110(46), pp.E4325-34
    Description: The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups.
    Keywords: Gene Regulatory Networks -- Genetics ; Hedgehog Proteins -- Metabolism ; Medulloblastoma -- Genetics ; Nfi Transcription Factors -- Genetics ; Signal Transduction -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Genetics, 2016, Vol.202(3), pp.1105-1118
    Description: The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
    Keywords: Microrna – Research ; Cell Development (Biology) – Genetic Aspects ; Cell Development (Biology) – Research ; Origin of Life – Research ; Drosophila – Genetic Aspects
    ISSN: 0016-6731
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 2012, Vol.109(20), pp.7859-7864
    Description: The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors. ; p. 7859-7864.
    Keywords: Models ; Mice ; Patients ; Drugs ; Neoplasms ; Drug Resistance ; Resistance Mechanisms ; Longevity ; Allografting ; Brain ; Remission ; Point Mutation
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Cancer, 01 January 2014, Vol.134(1), pp.21-31
    Description: The canonical Sonic Hedgehog (Shh)/Gli pathway plays multiples roles during central nervous system (CNS) development. To elucidate the molecular repertoire of Shh mediators, we have recently described novel transcriptional targets in response to Shh pathway modulation. Among them, we were able to identify Neogenin1 (Neo1), a death dependence receptor, as a new direct Shh downstream regulator in neural precursor proliferation. As appropriate Shh signaling is required for cerebellar growth and alterations cause Shh‐driven medulloblastoma (MB), here we have addressed the role of the Shh/Neogenin1 interaction in the context of cerebellar development and cancer. We demonstrate that the Shh pathway regulates Neogenin1 expression in mouse models that recapitulate the Shh MB subtype. We show that the canonical Shh pathway directly regulates the gene acting through an upstream sequence in its promoter both and in granule neuron precursor cells. We also identified and characterized a functional Gli‐binding site in the first intron of the human gene. Gene expression profiling of more than 300 MB shows that is indeed upregulated in SHH tumors compared to the other MB subgroups. Finally, we provide evidence that NEO1 is necessary for cell cycle progression in a human MB cell line, because a loss of function of arrests cells in the G2/M phase. Taken together, these results highlight Neogenin1 as a novel downstream effector of the Shh pathway in MB and a possible therapeutic target. What's new? Abnormal activation of the canonical Sonic Hedgehog (Shh)/Gli pathway has been associated with up to 30% of the human cases of medulloblastoma, which represents the most common malignant primary brain tumor in children. A greater knowledge of the cellular response to Shh pathway activation in the cerebellum is critical for both understanding disease formation and developing new treatments. In this study, the authors identified Neogenin‐1 as a novel downstream effector of the Shh pathway that mediates proliferation in both cultured cerebellar progenitors and shh‐driven medulloblastoma. The data suggest that targeting Neogenin‐1 could offer a promising alternative to current anti‐medulloblastoma therapies.
    Keywords: Medulloblastoma ; Sonic Hedgehog ; Neogenin 1 ; Gli ; Cancer
    ISSN: 0020-7136
    E-ISSN: 1097-0215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: The Cerebellum, 2015, Vol.14(6), pp.688-698
    Description: MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP -flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87 % in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.
    Keywords: Cerebellum ; Dicer1 protein ; Mouse ; Gli2 protein ; Mirn106 microRNA ; Mouse ; Growth and development
    ISSN: 1473-4222
    E-ISSN: 1473-4230
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS ONE, 01 January 2013, Vol.8(6), p.e65818
    Description: The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 15 May 2012, Vol.109(20), pp.7859-64
    Description: The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.
    Keywords: Medulloblastoma -- Drug Therapy ; Receptors, G-Protein-Coupled -- Antagonists & Inhibitors ; Signal Transduction -- Drug Effects ; Veratrum Alkaloids -- Pharmacology
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: The Journal of clinical investigation, September 2011, Vol.121(9), pp.3467-78
    Description: Hirschsprung (HSCR) disease is a complex genetic disorder attributed to a failure of the enteric neural crest cells (ENCCs) to form ganglia in the hindgut. Hedgehog and Notch are implicated in mediating proliferation and differentiation of ENCCs. Nevertheless, how these signaling molecules may interact to mediate gut colonization by ENCCs and contribute to a primary etiology for HSCR are not known. Here, we report our pathway-based epistasis analysis of data generated by a genome-wide association study on HSCR disease, which indicates that specific genotype constellations of Patched (PTCH1) (which encodes a receptor for Hedgehog) and delta-like 3 (DLL3) (which encodes a receptor for Notch) SNPs confer higher risk to HSCR. Importantly, deletion of Ptch1 in mouse ENCCs induced robust Dll1 expression and activation of the Notch pathway, leading to premature gliogenesis and reduction of ENCC progenitors in mutant bowels. Dll1 integrated Hedgehog and Notch pathways to coordinate neuronal and glial cell differentiation during enteric nervous system development. In addition, Hedgehog-mediated gliogenesis was found to be highly conserved, such that Hedgehog was consistently able to promote gliogenesis of human neural crest-related precursors. Collectively, we defined PTCH1 and DLL3 as HSCR susceptibility genes and suggest that Hedgehog/Notch-induced premature gliogenesis may represent a new disease mechanism for HSCR.
    Keywords: Cell Differentiation -- Physiology ; Hedgehog Proteins -- Metabolism ; Hirschsprung Disease -- Genetics ; Neuroglia -- Physiology ; Receptors, Notch -- Metabolism
    ISSN: 00219738
    E-ISSN: 1558-8238
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Endocrine-related cancer, June 2013, Vol.20(3), pp.273-81
    Description: The intrinsic properties underlying cancer development are extensively studied while the effect of a cancer on the host is often overlooked. Activation of the Hedgehog (Hh) signaling pathway underlies a number of types of common human cancers, yet little is known concerning endocrine signaling in such tumors. Here, we investigated endocrine signaling in a murine model of basal cell carcinoma (BCC) of the skin, the most common cancer. BCCs were generated by the activation of Hh signaling resulting from the specific deletion of the Ptch1 gene in the developing epidermis. Subsequently, a severe growth deficiency was observed in the murine BCC model, and we identified a deficiency of circulating IGF1 (Igf1). We demonstrate that Hh pathway activation in murine BCC induces IGF binding proteins, thereby regulating Igf1 sequestration into the skin and skewing Igf endocrine signaling. Significantly, these results show that Hh-induced tumors can have endocrine effects on normal tissues that in turn can greatly impact the host. This study not only identifies that Igf is important in Hh-associated skin tumors but also exemplifies the need to consider endocrine signaling when interpreting complex in vivo tumor models.
    Keywords: Bcc ; IGF ; Patched1 ; Skin ; Carcinoma, Basal Cell -- Metabolism ; Hedgehog Proteins -- Metabolism ; Insulin-Like Growth Factor I -- Metabolism ; Skin Neoplasms -- Metabolism
    ISSN: 13510088
    E-ISSN: 1479-6821
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Genetics, March 2016, Vol.202(3), pp.1105-18
    Description: The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
    Keywords: Dicer1 Protein ; Hedgehog Proteins ; Genes ; Heterozygote ; Medulloblastoma ; Mouse ; Nervous System Malformations ; Tumor Suppressor ; Signal Transduction ; Dead-Box RNA Helicases -- Physiology ; Hedgehog Proteins -- Physiology ; Micrornas -- Physiology ; Neurons -- Cytology ; Patched-1 Receptor -- Physiology ; Ribonuclease III -- Physiology
    ISSN: 00166731
    E-ISSN: 1943-2631
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages