Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: PLoS ONE, 2015, Vol.10(7)
    Description: Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Plant and Soil, 2013, Vol.366(1), pp.617-631
    Description: Background and aims Replant problems or soil sickness are known phenomena but still unsolved. The aims of this study were (i) to set up a test system for detecting replant problems using in vitro propagated apple rootstocks (M26) based on different soil disinfection treatments and (ii) to explore the treatment effects on root morphology and soil microbial community structure. Methods The bio-test involved soil with apple replant problems (apple sick) and healthy soil from an adjacent plot, both either untreated, or submitted to treatments of 50 and 100 °C, or the chemical soil disinfectant Basamid. Histological analyses of roots and denaturing gradient gel electrophoresis (DGGE) fingerprints in rhizosphere soil collected at the final evaluation were performed. Results After 10 weeks, shoot dry mass on apple sick soil was 79, 108 and 124 % higher for soil treated at 50 °C, 100 °C and with Basamid, respectively, compared to the untreated soil. Roots in untreated apple sick soil showed destroyed epidermal and cortical layers. DGGE fingerprints revealed treatment dependent differences in community composition and relative abundance of total bacteria, Bacillus, Pseudomonas and total fungi. Conclusions The clear differences detected in soil microbial communities are the first steps towards a better understanding of the causes for apple replant problems.
    Keywords: Apple replant disease ; Apple replant problem ; Denaturing gradient gel electrophoresis (DGGE) ; Malus domestica ; Microbial community profiling ; Root morphology ; Specific soil sickness
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, July 17, 2015, Vol.10(7)
    Description: Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.
    Keywords: Soil Microbiology ; Nucleotidases ; Hydrolysis ; RNA
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant and Soil, 2016, Vol.406(1), pp.389-408
    Description: Aims The effects of biofumigation with Brassica juncea 'Terra Plus' and Raphanus sativus 'Defender' in comparison to Basamid on apple plant growth and on soil microbial communities were studied at three sites affected by replant disease under field conditions. Methods Apple rootstocks were planted on differently treated plots to evaluate the effect of the treatments on plant growth under field and greenhouse conditions. The glucosinolates in biofumigant plant organs and their breakdown products in soils were determined. Denaturing gradient gel electrophoresis fingerprints were performed with 16S rRNA gene and ITS fragments amplified from total community DNA extracted from different soils. Results The highest glucosinolate concentrations were found in inflorescences of both biofumigant plant species with no differences between sites. The most abundant degradation product in soil biofumigated with B. juncea was 2-propenyl isothiocyanate, while in soil treated with R. sativus only 4-(methylthio)-3-butenyl isothiocyanate was detected. Effects of biofumigation were recorded to be stronger on fungi than on bacteria. Growth of apple rootstocks was positively affected by the treatments in a site-dependent manner. Conclusions The effects of biofumigation evaluated by the apple plant growth were site-dependent and might result from suppression of soil-borne pests and pathogens, changes in soil microbial community compositions, and additional nutrients from the incorporated biomass.
    Keywords: Apple replant disease ; Bacterial community composition ; Biofumigation ; DGGE ; Fungal community composition ; Glucosinolate ; Indicator plant ; Isothiocyanate ; Malus domestica
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Frontiers in Microbiology, Nov 6, 2015
    Description: Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.
    Keywords: Genetic Research – Analysis ; Genetic Research – Growth ; Apples – Analysis ; Apples – Growth ; Soils – Analysis ; Horticultural Industry – Analysis ; Horticultural Industry – Growth ; RNA – Analysis ; RNA – Growth ; Environmental Management – Analysis ; Environmental Management – Growth
    ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Frontiers in Microbiology, 01 September 2017, Vol.8
    Description: Nurseries producing apple and rose rootstock plants, apple orchards as well as rose production often experience replanting problems after several cultivations at the same site when a chemical soil disinfectant is not applied. The etiology of...
    Keywords: Amplicon Sequencing ; Apple Replant Disease ; Biofumigation ; Soil Microbiome ; Biology
    E-ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    Description: Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils ( model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product...
    Keywords: Enhanced Biodegradation ; Benzyl Isothiocyanate ; Hydrolysis Products ; Broccoli Sprouts ; Model Systems ; Rhizosphere ; Acid ; Decomposition ; Nitriles ; Sinigrin ; Dewey Decimal Classification::500 | Naturwissenschaften
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    Description: Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia,...
    Keywords: Biotest ; Apple Replant Disease ; Dgge ; Qpcr ; Pyrosequencing ; Bacterial Community Composition ; Bacterial Diversity ; Biotest ; Apfel ; Nachbaukrankheit ; Dgge ; Denaturierungsgradientengelelektrophorese ; Qpcr ; Quantitative Echtzeit Pcr ; Quantitative Real-Time Pcr ; Pyrosequenzierung ; Bakteriengemeinschaft ; Zusammensetzung ; Bakterielle Vielfalt ; Vielfalt ; Bakterien ; Biotest ; Apfel ; Apfelanbau ; Apfelkrankheit ; Specific Apple Replant Disease ; Denaturierende Gradienten-Gelelektrophorese ; Real Time Quantitative Pcr ; Sequenzanalyse ; Bakterien ; Vielfalt ; Dewey Decimal Classification::500 | Naturwissenschaften::570 | Biowissenschaften, Biologie ; Dewey Decimal Classification::500 | Naturwissenschaften::580 | Pflanzen (Botanik)
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages