Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Year
  • 1
    Language: English
    In: The Science of the Total Environment, Nov 15, 2015, Vol.533, p.40(9)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2015.06.090 Byline: Diego Fernandez, Katharina Voss, Mirco Bundschuh, Jochen P. Zubrod, Ralf B. Schafer Abstract: Large amounts of fungicides are applied globally and partly enter freshwater ecosystems. A few laboratory studies examined their effects on decomposer communities and the ecosystem process of litter decomposition (LD), whereas the field situation remains largely unknown. We conducted a field study with 17 stream sites in a German vineyard area where fungicides represent the dominant pest control agent. Passive samplers were used to monitor 15 fungicides and 4 insecticides in streams and their toxicity was described using the toxic unit approach, whereas sediment samples were taken to characterise total copper concentrations. Microbial and leaf-shredding invertebrate community composition and related LD rates were assessed at each site. The structure of microbial and shredder communities as well as fungal biomass changed along the fungicide toxicity gradient. The changes in microbial endpoints were associated with a reduction of microbial LD rate of up to 40% in polluted streams. By contrast, neither the invertebrate LD rate nor in-situ measured gammarid feeding rates correlated with fungicide toxicity, but both were negatively associated with sediment copper concentrations. A subsequent laboratory experiment employing field fungicide concentrations suggested that the microbial community changes are causal. Overall, our results suggest that fungicides can affect LD under field conditions. Article History: Received 20 April 2015; Revised 22 June 2015; Accepted 22 June 2015 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Fungicides – Analysis ; Vineyards – Analysis ; Wineries – Analysis ; Freshwater Ecosystems – Analysis ; Sediments (Geology) – Analysis
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The Science of the Total Environment, June 1, 2013, Vol.454-455, p.401(10)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2013.03.025 Byline: Dominic Englert, Jochen P. Zubrod, Ralf Schulz, Mirco Bundschuh Abstract: During recent years, increasing incidences of summer droughts - likely driven by climate change - reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~90% wastewater) as compared to a season with high dilution potential (winter; ~35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~65%), gammarids' feeding rate (~80%), leaf associated fungal biomass (〉40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300m (partially 500m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a Gammarus fossarum laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive -- also considering decreasing dilution potential of streams as projected by climate change scenarios. Article History: Received 13 January 2013; Revised 4 March 2013; Accepted 6 March 2013
    Keywords: Sewage Treatment -- Analysis ; Sewage Treatment -- Environmental Aspects ; Ecosystem Components -- Analysis ; Ecosystem Components -- Environmental Aspects ; Global Temperature Changes -- Analysis ; Global Temperature Changes -- Environmental Aspects ; Freshwater Ecosystems -- Analysis ; Freshwater Ecosystems -- Environmental Aspects ; Wastewater -- Analysis ; Wastewater -- Environmental Aspects
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The Science of the Total Environment, Dec 15, 2015, Vol.538, p.341(9)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.scitotenv.2015.08.058 Byline: Dominic Englert, Jochen P. Zubrod, Ralf Schulz, Mirco Bundschuh Abstract: Human activity can degrade the habitat quality for aquatic communities, which ultimately impacts the functions these communities provide. Disentangling the complex interaction between environmental and anthropogenic parameters as well as their alteration both along the stream channel, over the seasons, and finally their impact in the aquatic ecosystem represents a fundamental challenge for environmental scientists. Therefore, the present study investigates the implications of successive land uses (i.e., vineyard, urban area, highway and wastewater treatment plant (WWTP)) on structural and functional endpoints related to the ecosystem process of leaf litter breakdown during a winter and summer season in a five km stretch of a second-order stream in southern Germany. This sequence of the different land uses caused, among others, a downstream decline of the ecological status from "high" to "bad" judged based on the SPEAR.sub.pesticides index together with significant shifts in the macroinvertebrate community composition, which coincided with substantial impairments (up to 100%) in the macroinvertebrate-mediated leaf decomposition. These effects, seem to be mainly driven by alterations in water quality rather than morphological modifications of the stream's habitat since the key shredder Gammarus was not in direct contact with the local habitat during in situ bioassays but showed similar response patterns than the other endpoints. While the relative effect size for most endpoints deviated considerably (sometimes above 2-fold) among seasons, the general response pattern pointed to reductions in energy supply for local and downstream communities. Although the present study focused on a single low-order stream with the main purpose of describing the impact of different land uses on various levels of biological organization, which limits the direct transferability and thus applicability of results to other stream ecosystems, the findings point to the need to develop adequate management strategies mitigating land use specific exposures during all seasons to protect ecosystem integrity. Article History: Received 20 July 2015; Revised 11 August 2015; Accepted 11 August 2015 Article Note: (miscellaneous) Editor: D. Barcelo
    Keywords: Ecosystem Components – Environmental Aspects ; Land Use – Environmental Aspects ; River Channels – Environmental Aspects ; Human-Environment Interactions – Environmental Aspects ; Land Use Controls – Environmental Aspects
    ISSN: 0048-9697
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Chemosphere, Nov, 2011, Vol.85(10), p.1563(5)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.chemosphere.2011.07.060 Byline: Mirco Bundschuh, Jochen P. Zubrod, Dominic Englert, Frank Seitz, Ricki R. Rosenfeldt, Ralf Schulz Keywords: Nanoparticle; Titanium dioxide; Ultraviolet irradiation; Gammarus fossarum; Accumulation; Reactive oxygen species Abbreviations: nTiO.sub.2, titanium dioxide nanoparticles; ROS, reactive oxygen species; UV, ultraviolet; ANOVA, analysis of variance; PNEC, predicted no effect concentration Abstract: Display Omitted Author Affiliation: Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau/Palatinate, Germany Article History: Received 17 April 2011; Revised 20 July 2011; Accepted 27 July 2011
    Keywords: Titanium Dioxide -- Analysis
    ISSN: 0045-6535
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Hazardous Materials, 2011, Vol.192(2), pp.772-778
    Description: ► Meta-analysis displays reduced toxicity of wastewater due to activated carbon or ozone. ► Groups of species (invertebrates) react different than others (e.g. bacteria). ► Purification via SPE may overestimate the detoxification potential. ► bioassays showed reduced ecotoxicity due to activated carbon, ozone and TiO and UV. ► Activated carbon adsorbs nutrients, which may jeopardize any positive effect of this technique. Advanced treatment techniques, like ozone, activated carbon and TiO in combination with UV, are proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found significantly reduced overall ecotoxicity of municipal wastewaters treated with either ozone ( = 667) or activated carbon (=113), while TiO and UV was not yet assessed. As comparative investigations regarding the detoxification potential of these advanced treatment techniques in municipal wastewater are scarce, we assessed them in four separate -feeding trials with 20 replicates per treatment. These bioassays indicate that ozone concentrations of approximately 0.8 mg ozone/mg DOC may produce toxic transformation products. However, referred effects are removed if higher ozone concentrations are used (1.3 mg ozone/mg DOC). Moreover, the application of 1 g TiO /l and ambient UV consistently reduced ecotoxicity. Although activated carbon may remove besides micropollutants also nutrients, which seemed to mask its detoxification potential, this treatment technique reduced the ecotoxicity of the wastewater following its amendment with nutrients. Hence, all three advanced treatment techniques are suitable to reduce the ecotoxicity of municipal wastewater mediated by micropollutants and may hence help to meet the requirements of the European Water Framework Directive.
    Keywords: Meta-Analysis ; Feeding Rate ; Wastewater ; Advanced Oxidation ; Activated Carbon ; Engineering ; Law
    ISSN: 0304-3894
    E-ISSN: 1873-3336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 01 June 2013, Vol.454-455, pp.401-410
    Description: During recent years, increasing incidences of summer droughts – likely driven by climate change – reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~ 90% wastewater) as compared to a season with high dilution potential (winter; ~ 35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~ 65%), gammarids' feeding rate (~ 80%), leaf associated fungal biomass (〉 40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300 m (partially 500 m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive — also considering decreasing dilution potential of streams as projected by climate change scenarios.
    Keywords: Ecosystem Functions ; Leaf Decomposition ; In Situ ; Micropollutants ; Gammarus ; Powdered Activated Carbon ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 15 December 2015, Vol.538, pp.341-349
    Description: Human activity can degrade the habitat quality for aquatic communities, which ultimately impacts the functions these communities provide. Disentangling the complex interaction between environmental and anthropogenic parameters as well as their alteration both along the stream channel, over the seasons, and finally their impact in the aquatic ecosystem represents a fundamental challenge for environmental scientists. Therefore, the present study investigates the implications of successive land uses (i.e., vineyard, urban area, highway and wastewater treatment plant (WWTP)) on structural and functional endpoints related to the ecosystem process of leaf litter breakdown during a winter and summer season in a five km stretch of a second-order stream in southern Germany. This sequence of the different land uses caused, among others, a downstream decline of the ecological status from “high” to “bad” judged based on the SPEAR index together with significant shifts in the macroinvertebrate community composition, which coincided with substantial impairments (up to 100%) in the macroinvertebrate-mediated leaf decomposition. These effects, seem to be mainly driven by alterations in water quality rather than morphological modifications of the stream's habitat since the key shredder was not in direct contact with the local habitat during in situ bioassays but showed similar response patterns than the other endpoints. While the relative effect size for most endpoints deviated considerably (sometimes above 2-fold) among seasons, the general response pattern pointed to reductions in energy supply for local and downstream communities. Although the present study focused on a single low-order stream with the main purpose of describing the impact of different land uses on various levels of biological organization, which limits the direct transferability and thus applicability of results to other stream ecosystems, the findings point to the need to develop adequate management strategies mitigating land use specific exposures during all seasons to protect ecosystem integrity.
    Keywords: Ecosystem Function ; Leaf Litter Decomposition ; Gammarus ; Land Use ; Shredder ; Low Order Stream ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Pollution, January 2011, Vol.159(1), pp.244-249
    Description: Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder was exposed to natural stream water (  = 34) and secondary treated wastewater (  = 32) for four weeks in a semi-static test system under laboratory conditions. exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of . Micropollutants in wastewater cause functional and physiological alteration in a leaf-shredding amphipod.
    Keywords: Advanced Treatment Technology ; Ecological Functioning ; Gammarus Fossarum ; Leaf Litter Breakdown ; Wastewater ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Chemosphere, 2011, Vol.85(10), pp.1563-1567
    Description: ► Effects of nTiO and ambient UV-irradiation affect representatives of detrital food webs. ► Accumulation of nTiO at the bottom of the test vessel seems to affect ecotoxicity. ► nTiO and ambient UV-irradiation increases ecotoxicity due to the formation of ROS. Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO ), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO as well as ecotoxicological consequences due to the interactions of nTiO with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO at concentrations as low as 0.2 mg L on the leaf shredding amphipod both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.
    Keywords: Nanoparticle ; Titanium Dioxide ; Ultraviolet Irradiation ; Gammarus Fossarum ; Accumulation ; Reactive Oxygen Species ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Science of the Total Environment, 15 November 2016, Vol.571, pp.992-1000
    Description: Shredders play a central role in the breakdown of leaf material in aquatic systems. These organisms and the ecological function they provide may, however, be affected by chemical stressors either as a consequence of direct waterborne exposure or through alterations in food-quality (indirect pathway). To unravel the biological relevance of these effect pathways, we applied a 2 × 2-factorial test design. Leaf material was microbially colonized for 10 days in absence or presence of the fungicide epoxiconazole (15 μg/L) and subsequently fed to the shredder under exposure to epoxiconazole (15 μg/L) or in fungicide-free medium over a 28-day period ( = 40). Both effect pathways caused alterations in asselids' food processing, physiological fitness, and growth, although not always statistically significantly: assimilation either increased or remained at a similar level relative to the control suggesting compensatory behavior of to cope with the enhanced energy demand for detoxification processes and decreased nutritional quality of the food. The latter was driven by lowered microbial biomasses and the altered composition of fatty acids associated with the leaf material. Even with increased assimilation, direct and indirect effects caused decreases in the growth and lipid (fatty acid) content of with relative effect sizes between 10 and 40%. Moreover, the concentrations of two essential polyunsaturated fatty acids (i.e., arachidonic acid and eicosapentaenoic acid) were non-significantly reduced (up to ~ 15%) in asselids. This effect was, however, independent of the exposure pathway. Although waterborne effects were generally stronger than the diet-related effects, results suggest impaired functioning of via both effect pathways.
    Keywords: Asellus Aquaticus ; Biofilm ; Fatty Acid Composition ; Food Quality ; Leaf Litter Breakdown ; Shredder ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages