Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DNB  (88)
Type of Material
Type of Publication
Consortium
  • DNB  (88)
Language
  • 1
    UID:
    (DE-101)780697243
    Format: 112 S. , 21 cm
    Note: Köln, Univ., Math.-Naturwiss. Fak., Diss., 1977.
    Language: German
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    (DE-101)976695065
    Format: 204 S. , Ill. , 25 cm
    Series Statement: Schriftenreihe / Ring der Liechtensteinsammler e.V. H. 11
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    UID:
    (DE-101)1115861522
    Format: Online-Ressource
    Content: Zusammenfassung: Schnell wachsende Baumarten sollen in Zukunft vermehrt auf Kurzumtriebsplantagen zur Erzeugung von Energieholz angebaut werden. Insbesondere Pappeln sind jedoch dafür bekannt, im großen Umfang volatile organische Substanzen (VOCs) wie beispielsweise Isopren zu emittieren, das einen negativen Einfluss auf die troposhärische Atmosphärenchemie haben kann. Die Phosphoenolpyruvat-Carboxylase (PEPC) sitzt als anaplerotisches Enzym an einer entscheidenden Schnittstelle zwischen dem C- und N-Metabolismus von Pflanzen. Als eine ihrer Funktionen wird ein Einfluss der PEPC auf die Regulation der Isoprenemission diskutiert. Sowohl die PEPC als auch die Isoprenbiosynthese greifen in ihren Reaktionen auf Phosphoenolpyruvat (PEP) als Substrat zurück, so dass eine Konkurrenzsituation zwischen beiden Prozessen um die cytosolischen PEP-Reserven postuliert wurde. Eine stärkere Expression der PEPC sollte demnach zu einer verminderten Isoprenemission und dafür zu einer verstärkten Investition in die Aminosäuresynthese und den Baustoffwechsel führen. Die PEPC wird in Pflanzen durch eine Genfamilie codiert, die in Pappeln und anderen Baumarten bisher jedoch noch kaum untersucht ist. In der vorliegenden Arbeit wurde diesen Fragestellungen in zwei verschiedenen Ansätzen nachgegangen. Zum einen wurde erstmalig die PEPC-Genfamilie in Pappeln identifiziert und ihre Expression gewebespezifisch und saisonal charakterisiert. Zum anderen wurden genetisch veränderte Graupappeln (Populus x canescens) hergestellt, die ein C3-PEPC-Gen aus Flaveria trinervia überexprimierten. Drei transgene Linien (13, 23 und 25) wurden augewählt und im Hinblick auf ihre PEPC-Aktivität, zentrale Biomasse- und Gaswechselparameter, Wasserhaushalt, Metabolite und ihre Isoprenemission untersucht. Außerdem wurde erforscht, wie sich Wassermangel auf die transgenen Linien im Vergleich zum Wildtyp auswirkt. Fünf PEPC-Gene wurden in Populus trichocarpa identifiziert: Pt-PEPC.1, Pt-PEPC.2 und Pt-PEPC.3 waren typische Pflanzen-Typ PEPCs, während es sich bei Pt-PEPC.4 und Pt-PEPC.5 um Bakterien-Typ-PEPCs handelte. Die Gene Pt-PEPC.1 und 2 wiesen ebenso wie Pt-PEPC.4 und 5 mit jeweils über 93 % hohe Identitätsraten zueinander auf, während Pt-PEPC.3 eine seperate Position einnahm. In den gefundenen PEPC-Sequenzen waren alle essentiellen Aminosäurereste hoch konserviert. Der C-terminalen Bereich der fünf PEPC-Gene in Populus x canescens wurde kloniert und sequenziert. Auf der Basis dieser Sequenzinformationen wurden qPCR-Primer für Genexpressionsanalysen in Populus x cancescens erstellt. Die Gene Pc-PEPC.2 und insbesondere Pc-PEPC.1 waren am stärksten und gleichmäßigsten in allen Pflanzengeweben exprimiert. Pc-PEPC.3 wurde blattspezifisch und vorzugsweise in den Sommermonaten bei warmen Temperaturen exprimiert. Das BTPC-Gen Pc-PEPC.5 wurde in fast allen Geweben am niedrigsten exprimiert. Pc-PEPC.4 korrelierte hochsignifikant mit Pc-PEPC.1 und zeigte ähnliche Expressionmuster wie dieses Gen, während Pc-PEPC.5 stark mit Pc-PEPC.2 korrelierte und vergleichbare Expressionsmuster aufwies. Die transgenen Pappellinien zeigten unter Kontrollbedingungen je nach Gewebe etwa 1,7 bis 5,4mal so hohe PEPC-Aktivitäten wie der Wildtyp. Die transgenen Pflanzen wiesen erhöhte Photosynthese- und Respirationsraten auf. Die erhöhte Photosyntheserate war jedoch nicht direkt auf eine vermehrte CO2-Fixierung durch die PEPC zurückzuführen. Möglicherweise wurde stattdessen durch den vermehrten Verbrauch von Glucose eine Feedback-Regulation in Gang gesetzt. Die transgenen Pflanzen wiesen erhöhte Wachstumsraten auf. Gleichzeitig zeigten sie signifikant niedrigere spezifische Blattflächen und Blattanzahlen. Die Isoprenemission der transgenen Pflanzen war in einer Linie niedriger als beim Wildtyp. Wahrscheinlich handelte es sich hierbei jedoch um einen sekundären Effekt, der auf einem verstärkten NADPH-Bedarf infolge der erhöhten Photosyntheserate der transgenen Pflanzen beruhte. Metabolitanalysen deuteten auf einen stärkeren Transport löslicher Zucker, organischer Säuren umd Aminosäuren in junge Blätter hin als beim Wildtyp, während andere Sink- und Speichergewebe im Vergleich zum Wildtyp weniger gut versorgt wurden. Die PEPC-überexprimierenden Pappeln zeigten zudem Hinweise auf eine etwas schlechtere Wasserversorgung als der Wildtyp. Unter Wassermangel wurden keine erhöhte PEPC-Aktivität oder Wachstumsvorteile bei den transgenen Pflanzen im Vergleich zum Wildtyp festgestellt. Die transgenen Linien zeigten jedoch eine teilweise erhöhte Transpiration, stomatäre Leitfähigkeit und Wassernutzungseffizienz und hielten unter Trockenstress eine höhere Restphotosyntheserate aufrecht als der Wildtyp. Sie verloren infolge des Wassermangels jedoch verhältnismäßig mehr Blätter als der Wildtyp. Die Isoprenemission der Pappeln stieg in allen Pflanzen infolge des Trockenstresses an. Ein Unterschied zwischen dem Wildtyp und den transgenen Pflanzen wurde nicht beobachtet.
    Content: Zusammenfassung: Short rotation coppices with fast growing tree species are expected to be planted more widely in the future to meet the growing demand for wood as renewable energy source. However, especially poplar trees are known to emit large amounts of volatile organic compounds (VOCs) like isoprene, which can effect the atmosphere chemistry of the troposphere in a negative way. Phosphoenolpyruvate carboxylase (PEPC) is an anaplerotic enzyme positioned at a metabolic crossing point between C- and N-metabolism of plant cells. It has been discussed that PEPC might also be involved in the regulation of the isoprene emission of plants. Both, the PEPC reaction and isoprene biosynthesis are dependend on the supply of phosphoenolpyruvate (PEP) as a substrate, which led to the postulation of a competition for cytosolic PEP reserves between both processes. Thus, a stronger expression of PEPC should result in a reduction of isoprene emission and in an increase of amino acid synthesis and other parts of anabolic metabolism. PEPC is encoded by a gene family in plants but so far little is known about PEPC genes in poplar or other tree species. The aim of this study was to fill this gap by using two different approaches. One approach was to identify the PEPC gene family in poplar and to characterise the constituent genes by tissue specific and seasonal gene expression analyses. The other approach was supposed to create transgenic Grey Poplar plants (Populus x canescens) overexpressing a C3-PEPC gene from Flaveria trinervia. Three transgenic lines (13, 23, 25) were selected and investigated in terms of PEPC activity, biomass and gas exchange parameters, water balance, metabolites and isoprene emission. Furthermore, these lines were tested under drought stress conditions. Five PEPC genes were identified in Populus trichocarpa: Pt-PEPC.1, Pt-PEPC.2 and Pt-PEPC.3 represented typical plant type PEPCs, while Pt-PEPC.4 and Pt-PEPC.5 belonged to the so called bacterial type PEPCs. The gene pairs Pt-PEPC.1 and 2 as well as Pt-PEPC.4 and 5 exhibited very high identity rates of over 93 % to each other, while Pt-PEPC.3 grouped independently of both pairs. All essential amino acid residues were highly conserved. The C-terminal region of each gene was cloned and sequenced for Populus x canescens. Based on these sequence information, qPCR primers for gene expression analyses in Populus x cancescens were designed. The genes Pc-PEPC.2 and especially Pc-PEPC.1 were expressed most strongly and equally in all tissues. Pc-PEPC.3 was expressed in a leaf specific manner especially during the summer months and at warm temperatures. The BTPC Pc-PEPC.5 was expressed at the lowest level in almost all tissues. Pc-PEPC.4 correlated highly significant with Pc-PEPC.1 and showed similar expression patterns as this gene, while Pc-PEPC.5 was strongly correlated with Pc-PEPC.2 with comparable expression patterns. Under control conditions, the transgenic poplar lines showed PEPC activity levels which were 1.7 to 5.4 times higher than in wildtype plants. The transgenic lines showed increased photosynthesis and respiration rates. However, the increase in photosynthesis rate was not a direct result of an intensified CO2 assimilation by the PEPC, rather an increased consumption of glucose might have stimulated feedback regulation mechanisms. The transgenic plants also showed higher growth rates, but exhibited significant lower specific leaf area and leaf numbers than the wildtype. The isoprene emission of one of the transgenic lines was reduced. However, this observation might rather have been a secondary effect resulting from an increased demand for NADPH due to the elevated photosynthesis of the transgenic plants. Metabolic analyses indicated a better supply of young leaves with soluble sugars, organic acids and amino acids in the transgenic lines, while other sink and storage tissues were less well provided with these metabolites than in the wildtype. The PEPC overexpressing poplars furthermore exhibited indications of an impaired water balance. Under drought stress, neither increased PEPC activities nor higher growth rates or biomass accumulation were observed in the transgenic lines compared to the wildtype. Instead, the transgenic plants suffered stronger from water retention indicated by the loss of more leaves and by readjusting growth to the level of wildtype plants. However, the transgenic lines showed partly elevated water potential, transpiration, stomatal conductance and water use efficiency. Furthermore the PEPC overexpressing plants could retain higher photosynthesis rates under drought than the wildtype. The isoprene emission of all plants increased in response to drought stress. However, no difference between the wildtype and the transgenic plants was observed under those conditions
    Note: Dissertation Universität Freiburg 2014
    Language: German
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    (DE-101)1203066392
    Format: Online-Ressource
    Content: Abstract: Forests fulfill important ecological functions by sustaining nutrient cycles and providing habitats for a multitude of organisms. They further deliver ecosystem services such as carbon storage, protection from erosion, and wood as an important commodity. Trees have to cope in their environment with a multitude of natural and anthropogenic forms of stress. Resilience and resistance mechanisms to biotic and abiotic stresses are of special importance for long-lived tree species. Since trees exist for many decades or even centuries on the same spot, they have to acclimate their growth and reproduction to constantly changing atmospheric and pedospheric conditions. In this special issue, we invited contributions addressing the physiological responses of forest trees to a wide array of different stress factors. Among the eighteen papers published, seventeen covered drought or salt stress as major environmental cues, highlighting the relevance of this topic in times of climate change. Only one paper studied cold stress [1]. The dominance of drought and salt stress studies underpins the need to understand tree responses to these environmental threats from the molecular to the ecophysiological level. The papers contributing to this Special Issue cover these scientific aspects in different areas of the globe and encompass conifers as well as broadleaf tree species. In addition, two studies deal with bamboo (Phyllostachys sp., [1,2]). Bamboo, although botanically belonging to grasses, was included because its ecological functions and applications are similar to those of trees
    Note: Forests. - 10, 9 (2019) , 711, ISSN: 1999-4907
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    (DE-101)941581322
    Format: VI, 118 S. , graph. Darst. , 21 cm
    Edition: 1. Aufl.
    ISBN: 9783927548701 , 3927548707
    Series Statement: Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung Bd. 31
    Language: German
    Keywords: Wank ; Fichtennadel ; Anorganische Peroxide ; Umweltfaktor
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    (DE-101)891616373
    Format: 185, 111, 26 Bl. , graph. Darst., Kt. , 30 cm
    Note: Literaturangaben
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    (DE-101)1303779498
    Format: Online-Ressource, 1 online resource.
    ISSN: 1573-5036
    In: volume:215
    In: number:2
    In: pages:115-122
    In: date:10.1999
    In: Plant and soil, Dordrecht [u.a.] : Springer Science + Business Media B.V, 1948-, 215, Heft 2, 115-122, 10.1999, 1573-5036
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    (DE-101)1239556055
    Format: Online-Ressource
    Content: Abstract: Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, 15N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With inter-specific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to inter-specific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with inter-specific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech
    Note: Frontiers in plant science. - 6 (2015) , 00302, ISSN: 1664-462X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    (DE-101)1293153680
    Format: Online-Ressource
    Content: Abstract: Nitrogen (N) acquisition is a major factor determining the processes and mechanisms involved in tree productivity, development, and competitiveness. However, only few studies have investigated changes in N capturing with tree age. We conducted 15N incubation experiments to quantify inorganic (i.e. ammonium and nitrate) and organic (i.e. glutamine-N and arginine-N) net N acquisition capacity of beech trees of five age classes. Our results showed no general pattern, but that net N uptake capacity was rather N source-specific. Inorganic and glutamine-N uptake did not differ between age classes at all. Arginine-N uptake was highest in the youngest and oldest stands reflecting a high N demand by seedlings for root foraging and biomass production despite low internal N storage capacities and by older trees for storage and reproduction. Organic N was preferred over inorganic N regardless of tree age. Overall, our study shows the high significance of organic N sources for N acquisition in beech trees
    Note: ISSN: 1432-2285
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages