Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bioinformatics, 2002, Vol.18(10), pp.1340-1349
    Description: Motivation: DNA arrays are a very useful tool to quickly identify biological agents present in some given sample, e.g. to identify viruses causing disease, for quality control in the food industry, or to determine bacteria contaminating drinking water. The selection of specific oligos to attach to the array surface is a relevant problem in the experiment design process. Given a set S of genomic sequences (the target sequences), the task is to find at least one oligonucleotide, called probe, for each sequence in S . This probe will be attached to the array surface, and must be chosen in a way that it will not hybridize to any other sequence but the intended target. Furthermore, all probes on the array must hybridize to their intended targets under the same reaction conditions, most importantly at the temperature T at which the experiment is conducted. Results: We present an efficient algorithm for the probe design problem. Melting temperatures are calculated for all possible probetarget interactions using an extended nearest-neighbor model, allowing for both non-WatsonCrick base-pairing and unpaired bases within a duplex. To compute temperatures efficiently, a combination of suffix trees and dynamic programming based alignment algorithms is introduced. Additional filtering steps during preprocessing increase the speed of the computation. The practicability of the algorithms is demonstrated by two case studies: The identification of HIV-1 subtypes, and of 28S rDNA sequences from 400 organisms. Availability: The software is available on request. Contact: kaderali@zpr.uni-koeln.de
    Keywords: Biology;
    ISSN: 1367-4803
    E-ISSN: 1460-2059
    E-ISSN: 13674811
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of SPIE, 19 June 2002, Vol.4626(1), pp.308-315
    Description: We have developed a SNP scoring platform, yielding high throughput, inexpensive assays. The basic platform uses fluorescently labeled DNA fragments bound to microspheres, which are analyzed using flow cytometry. SNP scoring is performed using minisequencing primers and fluorescently labeled dideoxynucleotides. Furthermore, multiplexed microspheres make it possible to score hundreds of SNPs simultaneously. Multiplexing, coupled with high throughput rates allow inexpensive scoring of several million SNPs/day. GAMMArrays use universal tags that consist of computer designed, unique DNA tails. These are incorporated into each primer, and the reverse-component is attached to a discrete population of microspheres in a multiplexed set. This enables simultaneous minisequencing of many SNPs in solution, followed by capture onto the appropriate microsphere for multiplexed analysis by flow cytometry. We present results from multiplexed SNP analyses of bacterial pathogens, and human mtDNA variation. Analytes are performed on PCR amplicons, each containing numerous SNPs scored simultaneously. In addition, these assays easily integrate into conventional liquid handling automation, and require no unique instrumentation for setup and analysis. Very high signal-to-noise ratios, ease of setup, flexibility in format and scale, and low cost make these assays extremely versatile and valuable tools for a wide variety of SNP scoring applications.
    Keywords: Engineering
    ISBN: 9780819443656
    ISSN: 0277-786X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages