Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015  (46)
Type of Medium
Language
Year
  • 2015  (46)
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 25 August 2015, Vol.112(34), pp.E4772-81
    Description: Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
    Keywords: Hfq ; Rpra ; Feedforward Control ; Plasmid Conjugation ; Srna ; Chromosomes, Bacterial ; DNA, Bacterial -- Genetics ; RNA, Bacterial -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 03 June 2015, Vol.34(11), pp.1478-1492
    Description: There is an expanding list of examples by which one can posttranscriptionally influence the expression of others. This can involve sponges that sequester regulatory s of s in the same regulon, but the underlying molecular mechanism of such cross talk remains little understood. Here, we report sponge‐mediated cross talk in the posttranscriptional network of GcvB, a conserved Hfq‐dependent small with one of the largest regulons known in bacteria. We show that decay from the locus encoding an amino acid transporter generates a stable fragment (SroC) that base‐pairs with GcvB. This interaction triggers the degradation of GcvB by ase E, alleviating the GcvB‐mediated repression of other amino acid‐related transport and metabolic genes. Intriguingly, since the itself is a target of GcvB, the SroC sponge seems to enable both an internal feed‐forward loop to activate its parental in and activation of many ‐encoded s in the same pathway. Disabling this cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources. Decay of the bacterial GcvB , which keeps it from regulating its targets, is triggered by a 3′‐‐derived fragment from a target . This ability of s to compete for regulatory interaction presents a new mode of cross talk in bacteria. . Decay of the bacterial GcvB s, which keeps it from regulating its m targets, is triggered by a 3′‐‐derived fragment from a target m. This ability of ms to compete for regulatory interaction presents a new mode of cross talk in bacteria.
    Keywords: G Cv B ; H Fq ; Noncoding Rna ; Rn Ase E ; S Ro C
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: EMBO journal: European Molecular Biology Organization, 2015, Issue 11, pp.1478-1492
    Description: There is an expanding list of examples by which one mRNA can posttranscriptionally influence the expression of others. This can involve RNA sponges that sequester regulatory RNAs of mRNAs in the same regulon, but the underlying molecular mechanism of such mRNA cross talk remains little understood. Here, we report sponge-mediated mRNA cross talk in the posttranscriptional network of GcvB, a conserved Hfq-dependent small RNA with one of the largest regulons known in bacteria. We show that mRNA decay from the gltIJKL locus encoding an amino acid ABC transporter generates a stable fragment (SroC) that base-pairs with GcvB. This interaction triggers the degradation of GcvB by RNase E, alleviating the GcvB-mediated mRNA repression of other amino acid-related transport and metabolic genes. Intriguingly, since the gltIJKL mRNA itself is a target of GcvB, the SroC sponge seems to enable both an internal feed-forward loop to activate its parental mRNA in cis and activation of many trans-encoded mRNAs in the same pathway. Disabling this mRNA cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources.
    Keywords: Gcvb ; Hfq ; Noncoding Rna ; Rnase E ; Sroc
    ISSN: 0261-4189
    Source: Fundación Dialnet
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2015, Vol.10(11)
    Description: Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizosphere-mimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis- encoded antisense RNAs, as well as trans- encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus . Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Molecular Cell, 07 May 2015, Vol.58(3), pp.389-390
    Description: Natural RNA sponges sequestering cellular noncoding RNA molecules have been found in diverse organisms. In this issue, report another type of RNA sponge, showing that stable intermediates of bacterial tRNA processing control endogenous small RNAs. Natural RNA sponges sequestering cellular noncoding RNA molecules have been found in diverse organisms. In this issue, Lalaouna et al. (2015) report another type of RNA sponge, showing that stable intermediates of bacterial tRNA processing control endogenous small RNAs.
    Keywords: Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Annual review of genetics, 2015, Vol.49, pp.367-94
    Description: Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
    Keywords: Hfq ; RNA-Seq ; Tradis ; High-Throughput Technology ; Noncoding RNA ; Phenotype Mapping ; Ribosome Profiling ; Small RNA ; RNA, Bacterial -- Analysis ; RNA, Small Untranslated -- Analysis ; Sequence Analysis, RNA -- Methods
    ISSN: 00664197
    E-ISSN: 1545-2948
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Current Opinion in Microbiology, April 2015, Vol.24, pp.132-139
    Description: Most studies of small regulatory RNAs in bacteria have focussed on conserved transcripts in intergenic regions. However, several recent developments including single-nucleotide resolution transcriptome profiling by RNA-seq and increased knowledge of the cellular targets of the RNA chaperone Hfq suggest that the bacterial world of functional small RNAs is more diverse. One emerging class are small RNAs that are identical to the 3′ regions of known mRNAs, but are produced either by transcription from internal promoters or by mRNA processing. Using several recently discovered examples of such sRNAs, we discuss their biogenesis and modes of action, and illustrate how they can facilitate mRNA crosstalk in various physiological processes.
    Keywords: Biology
    ISSN: 1369-5274
    E-ISSN: 1879-0364
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Methods in molecular biology (Clifton, N.J.), 2015, Vol.1311, pp.1-21
    Description: The development of deep sequencing technology has greatly facilitated transcriptome analyses of both prokaryotes and eukaryotes. RNA-sequencing (RNA-seq), which is based on massively parallel sequencing of cDNAs, has been used to annotate transcript boundaries and revealed widespread antisense transcription as well as a wealth of novel noncoding transcripts in many bacteria. Moreover, RNA-seq is nowadays widely used for gene expression profiling and about to replace hybridization-based approaches such as microarrays. RNA-seq has also informed about the biogenesis and function of CRISPR RNAs (crRNAs) of different types of bacterial RNA-based CRISPR-Cas immune systems. Here we describe several studies that employed RNA-seq for crRNA analyses, with a particular focus on a differential RNA-seq (dRNA-seq) approach, which can distinguish between primary and processed transcripts and allows for a genome-wide annotation of transcriptional start sites. This approach helped to identify a new crRNA biogenesis pathway of Type II CRISPR-Cas systems that involves a trans-encoded small RNA, tracrRNA, and the host factor RNase III.
    Keywords: Clustered Regularly Interspaced Short Palindromic Repeats -- Genetics ; RNA -- Biosynthesis ; Sequence Analysis, RNA -- Methods
    ISSN: 10643745
    E-ISSN: 1940-6029
    Source: MEDLINE/PubMed (U.S. National Library of Medicine)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.1-2
    Keywords: Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages