Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Infection and immunity, September 2010, Vol.78(9), pp.3898-904
    Description: Haemophilus ducreyi must adapt to the environment of the human host to establish and maintain infection in the skin. Bacteria generally utilize stress response systems, such as the CpxRA two-component system, to adapt to hostile environments. CpxRA is the only obvious two-component system contained in the H. ducreyi genome and negatively regulates the lspB-lspA2 operon, which encodes proteins that enable the organism to resist phagocytosis. We constructed an unmarked, in-frame H. ducreyi cpxA deletion mutant, 35000HPDeltacpxA. In human inoculation experiments, 35000HPDeltacpxA formed papules at a rate and size that were significantly less than its parent and was unable to form pustules compared to the parent. CpxA usually has kinase and phosphatase activities for CpxR, and the deletion of CpxA leads to the accumulation of activated CpxR due to the loss of phosphatase activity and the ability of CpxR to accept phosphate groups from other donors. Using a reporter construct, the lspB-lspA2 promoter was downregulated in 35000HPDeltacpxA, confirming that CpxR was activated. Deletion of cpxA downregulated DsrA, the major determinant of serum resistance in the organism, causing the mutant to become serum susceptible. Complementation in trans restored parental phenotypes. 35000HPDeltacpxA is the first H. ducreyi mutant that is impaired in its ability to form both papules and pustules in humans. Since a major function of CpxRA is to control the flow of protein traffic across the periplasm, uncontrolled activation of this system likely causes dysregulated expression of multiple virulence determinants and cripples the ability of the organism to adapt to the host.
    Keywords: Bacterial Proteins -- Physiology ; Haemophilus Ducreyi -- Pathogenicity ; Protein Kinases -- Physiology
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Infection and immunity, August 2015, Vol.83(8), pp.3281-92
    Description: The (p)ppGpp-mediated stringent response is important for bacterial survival in nutrient limiting conditions. For maximal effect, (p)ppGpp interacts with the cofactor DksA, which stabilizes (p)ppGpp's interaction with RNA polymerase. We previously demonstrated that (p)ppGpp was required for the virulence of Haemophilus ducreyi in humans. Here, we constructed an H. ducreyi dksA mutant and showed it was also partially attenuated for pustule formation in human volunteers. To understand the roles of (p)ppGpp and DksA in gene regulation in H. ducreyi, we defined genes potentially altered by (p)ppGpp and DksA deficiency using transcriptome sequencing (RNA-seq). In bacteria collected at stationary phase, lack of (p)ppGpp and DksA altered expression of 28% and 17% of H. ducreyi open reading frames, respectively, including genes involved in transcription, translation, and metabolism. There was significant overlap in genes differentially expressed in the (p)ppGpp mutant relative to the dksA mutant. Loss of (p)ppGpp or DksA resulted in the dysregulation of several known virulence determinants. Deletion of dksA downregulated lspB and rendered the organism less resistant to phagocytosis and increased its sensitivity to oxidative stress. Both mutants had reduced ability to attach to human foreskin fibroblasts; the defect correlated with reduced expression of the Flp adhesin proteins in the (p)ppGpp mutant but not in the dksA mutant, suggesting that DksA regulates the expression of an unknown cofactor(s) required for Flp-mediated adherence. We conclude that both (p)ppGpp and DksA serve as major regulators of H. ducreyi gene expression in stationary phase and have both overlapping and unique contributions to pathogenesis.
    Keywords: Bacterial Proteins -- Metabolism ; Chancroid -- Microbiology ; Guanosine Tetraphosphate -- Metabolism ; Haemophilus Ducreyi -- Metabolism
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Infection and immunity, May 2016, Vol.84(5), pp.1514-1525
    Description: Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. MunsonJr, E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.
    Keywords: Adaptation, Physiological ; Gene Expression Profiling ; Stress, Physiological ; Carbon -- Metabolism ; Chancroid -- Microbiology ; Haemophilus Ducreyi -- Physiology
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: The Journal of infectious diseases, 01 June 2008, Vol.197(11), pp.1531-6
    Description: Haemophilus ducreyi 35000HP contains a cluster of homologues of genes required for the synthesis of enterobacterial common antigen (ECA), suggesting that H. ducreyi may express a putative ECA-like glycoconjugate. WecA initiates the synthesis of ECA by transferring N-acetylglucosamine to undecaprenyl-P, to form lipid I. A wecA mutant (35000HPwecA) was constructed, and 5 volunteers were inoculated at 3 sites with fixed doses of 35000HP on one arm and at 3 sites with varying doses of 35000HPwecA on the other arm. 35000HPwecA caused pustules to form at 3 sites inoculated with a dose 2.5-fold higher than that of 35000HP. However, at sites inoculated with similar doses of 35000HP and 35000HPwecA, pustules developed at 46.7% (95% confidence interval [CI], 23.3%-70.0%) of 15 parent-strain sites and at 8.3% (95% CI, 0.01%-23.6%) of 12 mutant-strain sites (P = .013). Thus, the expression of wecA contributes to the ability of H. ducreyi to cause pustules in humans.
    Keywords: Multigene Family ; Antigens, Bacterial -- Genetics ; Chancroid -- Microbiology ; Haemophilus Ducreyi -- Genetics
    ISSN: 0022-1899
    E-ISSN: 15376613
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages