Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cirpka, Oa  (137)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Physical review letters, 06 November 2015, Vol.115(19), pp.194502
    Description: Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation. The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static mixers, but in porous media.
    Keywords: Twisting ; Media ; Exchange ; Helical Flow ; Transport ; Plumes ; Porous Media ; Mathematical Analysis ; Plasma Physics (General) (So) ; Physics (General) (Ah);
    ISSN: 00319007
    E-ISSN: 1079-7114
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Hydrology, February 2017, Vol.545, pp.42-54
    Description: Groundwater resources management requires operational, regional-scale groundwater models accounting for dominant spatial variability of aquifer properties and spatiotemporal variability of groundwater recharge. We test the Ensemble Kalman filter (EnKF) to estimate transient hydraulic heads and groundwater recharge, as well as the hydraulic conductivity and specific-yield distributions of a virtual phreatic aquifer. To speed up computation time, we use a coarsened spatial grid in the filter simulations, and reconstruct head measurements at observation points by a local model in the vicinity of the piezometer as part of the observation operator. We show that the EnKF can adequately estimate both the mean and spatial patterns of hydraulic conductivity when assimilating daily values of hydraulic heads from a highly variable initial sample. The filter can also estimate temporally variable recharge to a satisfactory level, as long as the ensemble size is large enough. Constraining the parameters on concentrations of groundwater-age tracers (here: tritium) and transient hydraulic-head observations cannot reasonably be done by the EnKF because the concentrations depend on the recharge history over longer times while the head observations have much shorter temporal support. We thus use a different method, the Kalman Ensemble Generator (KEG), to precondition the initial ensemble of the EnKF on the groundwater-age tracer data and time-averaged hydraulic-head values. The preconditioned initial ensemble exhibits a smaller spread as well as improved means and spatial patterns. The preconditioning improves the EnKF particularly for smaller ensemble sizes, allowing operational data assimilation with reduced computational effort. In a validation scenario of delineating groundwater protection zones, the preconditioned filter performs clearly better than the filter using the original initial ensemble.
    Keywords: Data Assimilation of Hydraulic Heads ; Ensemble Kalman Filter ; Kalman Ensemble Generator ; Groundwater-Age Tracers ; Phreatic Aquifer ; Groundwater Recharge ; Hydraulic Conductivity ; Specific Yield ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Water Research, 15 October 2015, Vol.83, pp.205-216
    Description: Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.
    Keywords: Reaeration ; Gas-Tracer Tests ; Whole-Stream Metabolism ; Dispersion ; Oxygen Balance of Streams ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Hydrology, 27 November 2014, Vol.519, pp.3386-3399
    Description: The travel-time distribution between rivers and groundwater observation points and the mixing of freshly infiltrated river water with groundwater of other origin is of high relevance in riverbank filtration. These characteristics usually are inferred from the analysis of natural-tracer time series, typically relying on a stationary input–output relationship. However, non-stationarity is a significant feature of the riparian zone causing time-varying river-to-groundwater transfer functions. We present a non-stationary extension of nonparametric deconvolution by performing stationary deconvolution with windowed time series, enforcing smoothness of the determined transfer function in time and travel time. The nonparametric approach facilitates the identification of unconventional features in travel-time distributions, such as broad peaks, and the sliding-window approach is an easy way to accommodate the method to dynamic changes of the system under consideration. By this, we obtain time-varying signal-recovery rates and travel-time distributions, from which we derive the mean travel time and the spread of the distribution as function of time. We apply our method to electric-conductivity data collected at River Thur, Switzerland, and adjacent piezometers. The non-stationary approach reproduces the groundwater observations significantly better than the stationary one, both in terms of overall metrics and in matching individual peaks. We compare characteristics of the transient transfer function to base flow which indicates shorter travel times at higher river stages.
    Keywords: Travel-Time Distribution ; Bank Filtration ; Non-Stationarity ; Nonparametric Inference ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Hydrology, 15 November 2013, Vol.505, pp.352-363
    Description: Dissolved oxygen (DO) is an important groundwater-quality parameter, especially within the context of drinking-water production by riverbank filtration. In riverbank sediments, a strong decrease of DO over the distance of a few meters has frequently been observed. The consumption rates may vary in time, which puts the representativeness of common, sporadic DO measurements in groundwater, based on monthly or even yearly sampling, into question. We present a new modeling approach that allows efficiently estimating DO concentrations in alluvial groundwater from measured DO concentrations in the river under various temperature and discharge conditions. The model is based on the stochastic–convective reactive approach and assumes a time-invariant lognormal travel-time distribution of the stream tube ensemble connecting the river and a groundwater observation well. DO consumption, resulting from aerobic respiration, is modeled by zero-order kinetics. According to high-resolution DO time series measured in the Thur River (NE-Switzerland) and an adjacent observation well, the DO consumption rate appears to depend on river temperature and discharge. While the temperature dependence of aerobic respiration is well known, the discharge dependence is probably related to an increased trapping of particulate organic matter (POM) within the riverbed during high-discharge events, thus enhancing the POM availability and DO consumption rate. We propose an empirical equation that quantifies the dependence between discharge and the DO consumption rate. The estimated parameterization at our field site suggests that an increasing discharge within the narrow window of 20–50 m /s enhances the DO consumption rate by a factor of 4. By considering the measured DO in the river and including the dependence of the DO consumption rate on both discharge and temperature, the model was able to capture the diurnal, short-term (days to weeks), and seasonal dynamics of the observed DO within the alluvial aquifer. The temperature dependence of the DO consumption rate was found to be more important on a seasonal time scale, while the effect of discharge dominated the DO behavior during hydrological events extending over a few days to weeks. The presented modeling approach can be transferred to other riverbank-filtration systems to efficiently estimate DO concentrations in alluvial aquifers under various climatic and hydrologic conditions and, hence, assess the risk of approaching anoxic conditions in a changing climate.
    Keywords: Riverbank Filtration ; Climate Change ; Oxygen Consumption ; Stochastic–Convective Reactive Transport ; POM ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Hydrology, 2010, Vol.380(1), pp.154-164
    Description: Vertical temperature profiling in the river beds of losing streams has been shown to be useful in obtaining seepage rates. We present a method for high-resolution vertical temperature profiling in surface-water sediments for detailed quantification of seepage flux over depth and time. The method is based on fiber-optic distributed temperature sensing, in which temperature profiles along an optical fiber are obtained by making use of Raman scattering. An optical fiber was wrapped around a 2 in. PVC tube and installed vertically within the streambed sediment. The wrapping transfers the spatial resolution along the fiber of 1 m to a vertical resolution of about 5 mm. The high-resolution temperature profiler was tested at a losing reach of the Swiss prealpine River Thur resulting in a 20-day long temperature time series with a temporal resolution of 10 min. The time series are analyzed by means of dynamic harmonic regression to obtain the diurnal contributions of the measured time series at all depths and time points. The time for the diurnal temperature signal to reach the observation depth and the associated attenuation of the signal are calculated from the phase angles and amplitudes of the diurnal contributions. The time shift results in an apparent celerity of diurnal temperature propagation, which is converted into an apparent seepage rate by fitting the data to the analytical solution for convective–conductive heat transfer in a semi-infinite, uniform, one-dimensional domain with a sinusoidal surface temperature. The high spatial resolution allows the location of discontinuities in the river bed which would have remained undetected if temperature had been measured only at a few individual depths to be identified. This is a particular strength of the fiber-optic high-resolution temperature profiler. The time series also give evidence of sporadic high infiltration rates at times of high water tables.
    Keywords: River–Groundwater Interaction ; Fiber-Optic Distributed Temperature Sensing ; Time Series Analysis ; Seepage Flux ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Water Resources Research, July 2010, Vol.46(7), pp.n/a-n/a
    Description: Biodegradation of continuously emitted compounds that need a dissolved reaction partner, which is not jointly introduced with the contaminant into the subsurface, is mainly controlled by transverse dispersive mixing. Previous analytical approaches of evaluating mixing‐controlled bioreactive transport in steady state have been based on the assumption that the bulk aqueous‐phase concentration of the reactants is directly available to the specific biomass catalyzing the reaction. These models predict a very narrow stripe of active biomass with high specific biomass concentration. Experimental studies have indicated that such behavior may be unrealistic, particularly for anaerobic biodegradation. I extend the previous analysis to include kinetic solute uptake by the biomass, expressed as a first‐order mass‐transfer process coupled to dual Monod kinetics in the bio‐available domain. The approach is based on the evaluation of conservative components undergoing advective‐dispersive transport, the solution of a quadratic speciation problem within the immobile bio domain, and iterative simulation of linear transport of a single reactive constituent in steady state. Convergence is typically achieved within less than ten iterations. The comparison with simulations assuming instantaneous solute uptake by the biomass indicate that mass‐transfer kinetics may explain larger overlap of reactive constituents and a wider spatial distribution of specific biomass observed in experiments. Depending on the rate coefficient of mass transfer, the overall transformation of the contaminant may be significantly reduced or only slightly shifted to a region farther downstream.
    Keywords: Biodegradation ; Kinetic Mass Transfer ; Reactive Transport ; Monod Kinetics
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Hydrology, May 2018, Vol.560, pp.97-108
    Description: Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.
    Keywords: Mobile-Mobile ; Mobile-Immobile ; Mixing ; Reactive Transport ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Water Resources Research, January 2012, Vol.48(1), pp.n/a-n/a
    Description: We perform a salt tracer experiment, monitored by time‐lapse electrical resistivity tomography, in a quasi‐two‐dimensional sandbox with the aim of determining the hydraulic conductivity distribution in the domain. We use sodium chloride as a tracer, together with cochineal red for visual monitoring. The time series of observed resistance for each electrode configuration is characterized by its temporal moments. We invert the mean arrival time of electrical potential perturbations and a few steady state hydraulic head measurements using the fully coupled hydrogeophysical approach recently introduced by Pollock and Cirpka (2010). This is the first application of the approach to experimental data. The results obtained show a reasonable agreement between the estimated hydraulic conductivity field and the pattern of the actual sandbox filling. Using this estimation, a transient simulation is performed to compute the propagation of the salt tracer plume through the sandbox. The latter is compared to pictures taken during the experiment. These results show an even better agreement, indicating that the lenses of different sand types are not entirely homogeneous and some unexpected preferential flow paths are present. We conclude that temporal moments of potential perturbations obtained during salt tracer tests provide a good basis for inferring the hydraulic conductivity distribution by fully coupled hydrogeophysical inversion. Use temporal moments to invert ERT monitoring data of salt‐tracer experiments Application to laboratory experiments has been successful Inverted results may be better than intended zonation of filling pattern
    Keywords: Electrical Resistivity Tomography ; Fully Coupled Inversion ; Salt Tracer Tests ; Temporal Moments
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Water Resources Research, July 2011, Vol.47(7), pp.n/a-n/a
    Description: The hyporheic zone has been identified as important for river ecology, natural biogeochemical turnover, filtration of particles, degradation of dissolved pollutants—and thus for the self‐cleaning capacity of streams, and for groundwater quality. Good estimation of the traveltime distribution in the hyporheic zone is required to achieve a better understanding of transport in the river system. The transient‐storage model has been accepted as an appropriate tool for reach‐scale transport in rivers undergoing hyporheic exchange, but the choice of the best parametric function for the hyporheic traveltime distribution has remained unclear. We present an approach to obtaining hyporheic traveltime distributions from synchronous conservative and “smart” tracer experiments that does not rely on a particular functional form of the hyporheic traveltime distribution, but treats the latter as a continuous function. Nonnegativity of the hyporheic traveltime distribution is enforced by the application of Lagrange multipliers. A smoothness parameter, needed for regularization, and uncertainty bounds are obtained by the expectation‐maximization method relying on conditional realizations. The shape‐free inference provides the opportunity for capturing unconventional shapes, e.g., multiple peaks, in the estimation. We test the approach by applying it to a virtual test case with a bimodal hyporheic traveltime distribution, which is recaptured in the inversion of noisy data. No particular functional shape of hyporheic travel distribution is assumed Reactive tracers help separating different mixing process in streams Uncommon features in hyporheic traveltime distribution can be revealed
    Keywords: Bayesian Analysis ; Hyporheic Exchange ; Nonnegativity ; Transient‐Storage Model
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages