Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cremer, D  (487)
Language
Year
  • 1
    Language: English
    In: The journal of physical chemistry. A, 11 August 2011, Vol.115(31), pp.8731-42
    Description: A new method is presented to describe deformations of an N-membered planar ring (N-ring) molecule in terms of deformation vectors that can be expressed by a set of 2N-3 deformation amplitudes and phase angles. The deformation coordinates are directly derived from the normal vibrational modes of the N-ring and referenced to a regular polygon (N-gon) of unit length. They extend the conceptual approach of the Cremer-Pople puckering coordinates (J. Am. Chem. Soc. 1975, 97, 1354) to the planar ring and make it possible to calculate, e.g., a planar ring of special deformation on a Jahn-Teller surface. It is demonstrated that the 2N-3 deformation parameters are perfectly suited to describe the pseudorotation of a bond through the ring as it is found in cyclic Jahn-Teller systems. In general, an N-membered planar ring can undergo N-2 different bond pseudorotations provided the energetics of such a process is feasible. The Jahn-Teller distortions observed in ring compounds correspond either directly to the basic pseudorotation modes or to linear combinations of them. Any deformed ring molecule can be characterized in terms of the new ring deformation coordinates, which help to identify specific electronic effects. The usefulness of the ring deformation coordinates is demonstrated by calculating the Jahn-Teller surfaces for bond pseudorotation in the case of the cyclopropyl radical cation and cyclobutadiene as well as the ring deformation surfaces of disulfur dinitride and its dianion employing multireference averaged quadratic coupled cluster (MR-AQCC) theory, equation-of-motion coupled cluster theory in form of EOMIP-CCSD, and single determinant coupled cluster theory in form of CCSD(T).
    Keywords: Chemistry;
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The journal of physical chemistry. A, 05 April 2012, Vol.116(13), pp.3481-6
    Description: Based on the normalized elimination of the small component relativistic formalism, a new approach to the calculation of hyperfine structure parameters of paramagnetic molecules is developed and implemented. The new method is tested in the calculation of the isotropic hyperfine structure constant for a series of open-shell molecules containing mercury. The results of calculations carried out in connection with ab initio methods of increasing complexity demonstrate the high accuracy of the formalism developed. In view of its computational simplicity, the new approach provides the basis for an efficient and accurate calculation of the HFS parameters of large molecules.
    Keywords: Chemistry;
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The journal of physical chemistry. A, 10 September 2015, Vol.119(36), pp.9541-56
    Description: Bond anomalies have been investigated for a set of 53 molecules with either N-F, Ti-P, Cr-H, Pb-C, or Pb-F bonds for which reverse rather than inverse bond length-bond strength relationships have been previously claimed. The intrinsic strength of each bond investigated was determined utilizing the associated local stretching force constant obtained at the CCSD(T)/aug-cc-pVTZ level of theory. For the metal containing molecules, LC-ωPBE calculations with the aug-cc-pVTZ (Cr, Pb) and the 6-31++G(d,p) basis set (Ti) were carried out. For bonds containing a metal atom, any bond anomaly could not be confirmed. Previously reported results were due to ill-defined bond strength descriptors or lacking accuracy. In the case of the fluoro amines, methyl fluoro amines, and the fluoro amine oxides, direct or hidden bond anomalies were detected, which result from two or more opposing electronic effects: a dominant bond shortening effect due to electron withdrawal and a bond weakening due to lone pair repulsion or hybridization defects. Bond anomalies can be disguised by a complex interplay of electronic effects. These hidden bond anomalies could be identified in this work for the fluoro amine chalcogenides.
    Keywords: Chemistry;
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: The journal of physical chemistry. A, 12 September 2013, Vol.117(36), pp.8981-95
    Description: Increasing the effective electronegativity of two atoms forming a triple bond can increase the strength of the latter. The strongest bonds found in chemistry involve protonated species of hydrogen cyanide, carbon monoxide, and dinitrogen. CCSD(T)/CBS (complete basis set) and G4 calculations reveal that bond dissociation energies are misleading strength descriptors. The strength of the bond is assessed via the local stretching force constants, which suggest relative bond strength orders (RBSO) between 2.9 and 3.4 for heavy atom bonding (relative to the CO bond strength in methanol (RBSO = 1) and formaldehyde (RBSO = 2)) in [HCNH](+)((1)Σ(+)), [HCO](+)((1)Σ(+)), [HNN](+)((1)Σ(+)), and [HNNH](2+)((1)Σg(+)). The increase in strength is caused by protonation, which increases the electronegativity of the heavy atom and thereby decreases the energy of the bonding AB orbitals (A, B: C, N, O). A similar effect can be achieved by ionization of a nonbonding or antibonding electron in CO or NO. The strongest bond with a RBSO value of 3.38 is found for [HNNH](2+) using scaled CCSD(T)/CBS frequencies determined for CCSD(T)/CBS geometries. Less strong is the NN bond in [FNNH](2+) and [FNNF](2+).
    Keywords: Chemistry;
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Inorganic chemistry, 06 January 2014, Vol.53(1), pp.478-95
    Description: Tolman's electronic parameter (TEP) derived from the A1-symmetrical CO stretching frequency of nickel-phosphine-tricarbonyl complexes, R3PNi(CO)3, is brought to a new, improved level by replacing normal with local vibrational frequencies. CO normal vibrational frequencies are always flawed by mode-mode coupling especially with metal-carbon stretching modes, which leads to coupling frequencies as large as 100 cm(-1) and can become even larger when the transition metal and the number of ligands is changed. Local TEP (LTEP) values, being based on local CO stretching force constants rather than normal mode frequencies, no longer suffer from mode coupling and mass effects. For 42 nickel complexes of the type LNi(CO)3, it is shown that LTEP values provide a different ordering of ligand electronic effects as previously suggested by TEP and CEP values. The general applicability of the LTEP concept is demonstrated.
    Keywords: Chemistry;
    ISSN: 00201669
    E-ISSN: 1520-510X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Inorganic chemistry, 04 March 2013, Vol.52(5), pp.2497-504
    Description: 1,3-Benzenediamidoethanethiolatemercury [BDT-Hg or BD(S)-Hg] and its derivatives are investigated utilizing the Dirac exact relativistic normalized elimination of the small component method in connection with B3LYP, CCSD(T), and polarizable continuum calculations. It is shown that the chelating energy of BDT-Hg can be significantly increased by replacing sulfur with selenium or tellurium, thus leading to BD(Se)-Hg or BD(Te)-Hg. In this particular case, the chalcogenophilicity of mercury increases from S to Te because increasing the E-Hg bond lengths leads to a reduction of ring strain. Various possibilities of increasing the metal (M) chelating strength in BDT-M complexes are investigated, and suggestions for new chelating agents based on the BDT-M template are made.
    Keywords: Gravitation ; Quantum Theory ; Signal Processing, Computer-Assisted ; Environmental Pollutants -- Chemistry ; Mercury -- Isolation & Purification
    ISSN: 00201669
    E-ISSN: 1520-510X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: The Journal of organic chemistry, 21 October 2016, Vol.81(20), pp.9669-9686
    Description: Vibrational frequencies can be measured and calculated with high precision. Therefore, they are excellent tools for analyzing the electronic structure of a molecule. In this connection, the properties of the local vibrational modes of a molecule are best suited. A new procedure is described, which utilizes local CC stretching force constants to derive an aromaticity index (AI) that quantitatively determines the degree of π-delocalization in a cyclic conjugated system. Using Kekulé benzene as a suitable reference, the AIs of 30 mono- and polycyclic conjugated hydrocarbons are calculated. The AI turns out to describe π-delocalization in a balanced way by correctly describing local aromatic units, peripheral, and all-bond delocalization. When comparing the AI with the harmonic oscillator model of AI, the latter is found to exaggerate the antiaromaticity of true and potential 4n π-systems or to wrongly describe local aromaticity. This is a result of a failure of the Badger relationship (the shorter bond is always the stronger bond), which is only a rule and therefore cannot be expected to lead to an accurate description of the bond strength via the bond length. The AI confirms Clar's rule of disjoint benzene units in many cases, but corrects it in those cases where peripheral π-delocalization leads to higher stability. [5]-, [6]-, [7]-Circulene and Kekulene are found to be aromatic systems with varying degree of delocalization. Properties of the local vibrational modes provide an accurate description of π-delocalization and an accurate AI.
    Keywords: Chemistry;
    ISSN: 00223263
    E-ISSN: 1520-6904
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: The journal of physical chemistry. A, 05 March 2015, Vol.119(9), pp.1443-5
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Chemistry – A European Journal, 14 March 2016, Vol.22(12), pp.4087-4099
    Description: The intrinsic bond strength of C in its Σ ground state is determined from its stretching force constant utilizing MR‐CISD+Q(8,8), MR‐AQCC(8,8), and single‐determinant coupled cluster calculations with triple and quadruple excitations. By referencing the CC stretching force constant to its local counterparts of ethane, ethylene, and acetylene, an intrinsic bond strength half way between that of a double bond and a triple bond is obtained. Diabatic MR‐CISD+Q results do not change this. Confinement of C and suitable reference molecules in a noble gas cage leads to compression, polarization, and charge transfer effects, which are quantified by the local CC stretching force constants and differences of correlated electron densities. These results are in line with two π bonds and a partial σ bond. Bond orders and bond dissociation energies of small hydrocarbons do not support quadruple bonding in C. : Multireference‐coupled cluster calculations of free and confined dicarbon, C, lead to a bond strength order of 2.5 relative to that of ethane according to adiabatic/diabatic calculations and local stretching force constants. Electron density and energy density together with Wiberg and Mayer bond indices, all determined at the multireference level, suggest a bond multiplicity lower than 3 in line with the bond strength order.
    Keywords: Ab Initio Calculations ; Bond Strength ; Carbon ; Force Constants ; Quadruple Bonds ; Space Confinement Analysis
    ISSN: 0947-6539
    E-ISSN: 1521-3765
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: The Journal of Chemical Physics, 07 October 2012, Vol.137(13)
    Description: The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.
    Keywords: Communications
    ISSN: 0021-9606
    E-ISSN: 1089-7690
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages