Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Bacteriology, 2015, Vol.197(1-2), p.277(9)
    Description: The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen.
    Keywords: Overlapping Genes – Research ; Haemophilus Influenzae – Risk Factors ; Haemophilus Influenzae – Care and Treatment ; Haemophilus Influenzae – Genetic Aspects ; Oxidative Stress – Research ; Gene Mutation – Research
    ISSN: 0021-9193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Bacteriology, 2007, Vol. 189(3), p.1004
    Description: Nontypeable Haemophilus influenzae (NTHi) is a gram-negative bacterium and a common commensal organism of the upper respiratory tract in humans. NTHi causes a number of diseases, including otitis media, sinusitis, conjunctivitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During the course of colonization and infection, NTHi must withstand oxidative stress generated by insult due to multiple reactive oxygen species produced endogenously by other copathogens and by host cells. Using an NTHi-specific microarray containing oligonucleotides representing the 1821 open reading frames of the recently sequenced NTHi isolate 86-028NP, we have identified 40 genes in strain 86-028NP that are upregulated after induction of oxidative stress due to hydrogen peroxide. Further comparisons between the parent and an isogenic oxyR mutant identified a subset of 11 genes that were transcriptionally regulated by OxyR, a global regulator of oxidative stress. Interestingly, hydrogen peroxide induced the OxyR-independent upregulation of expression of the genes encoding components of multiple iron utilization systems. This finding suggested that careful balancing of levels of intracellular iron was important for minimizing the effects of oxidative stress during NTHi colonization and infection and that there are additional regulatory pathways involved in iron utilization.
    Keywords: Biology;
    ISSN: 0021-9193
    ISSN: 00219193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Bacteriology, 2005, Vol. 187(13), p.4627
    Description: In 1995, the Institute for Genomic Research completed the genome sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. Although extremely useful in understanding the basic biology of H. influenzae, these data have not provided significant insight into disease caused by nontypeable H. influenzae, as serotype d strains are not pathogens. In contrast, strains of nontypeable H. influenzae are the primary pathogens of chronic and recurrent otitis media in children. In addition, these organisms have an important role in acute otitis media in children as well as other respiratory diseases. Such strains must therefore contain a gene repertoire that differs from that of strain Rd. Elucidation of the differences between these genomes will thus provide insight into the pathogenic mechanisms of nontypeable H. influenzae. The genome of a representative nontypeable H. influenzae strain, 86-028NP, isolated from a patient with chronic otitis media was therefore sequenced and annotated. Despite large regions of synteny with the strain Rd genome, there are large rearrangements in strain 86-028NP's genome architecture relative to the strain Rd genome. A genomic island similar to an island originally identified in H. influenzae type b is present in the strain 86-028NP genome, while the mu-like phage present in the strain Rd genome is absent from the strain 86-028NP genome. Two hundred eighty open reading frames were identified in the strain 86-028NP genome that were absent from the strain Rd genome. These data provide new insight that complements and extends the ongoing analysis of nontypeable H. influenzae virulence determinants. [PUBLICATION ]
    Keywords: Genetics ; Influenza ; Bacteriology ; Pathogens;
    ISSN: 0021-9193
    ISSN: 00219193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, 2005, Vol. 73(3), p.1635
    Description: Haemophilus influenzae is considered a nonmotile organism that expresses neither flagella nor type IV pili, although H. influenzae strain Rd possesses a cryptic pilus locus. We demonstrate here that the homologous gene cluster pilABCD in an otitis media isolate of nontypeable H. influenzae strain 86-028NP encodes a surface appendage that is highly similar, structurally and functionally, to the well-characterized subgroup of bacterial pili known as type IV pili. This gene cluster includes a gene (pilA) that likely encodes the major subunit of the heretofore uncharacterized H. influenzae-expressed type IV pilus, a gene with homology to a type IV prepilin peptidase (pilD) as well as two additional uncharacterized genes (pilB and pilC). A second gene cluster (comABCDEF) was also identified by homology to other pil or type II secretion system genes. When grown in chemically defined medium at an alkaline pH, strain 86-028NP produces approximately 7-nm-diameter structures that are near polar in location. Importantly, these organisms exhibit twitching motility. A mutation in the pilA gene abolishes both expression of the pilus structure and the twitching phenotype, whereas a mutant lacking ComE, a Pseudomonas PilQ homologue, produced large appendages that appeared to be membrane bound and terminated in a slightly bulbous tip. These latter structures often showed a regular pattern of areas of constriction and expansion. The recognition that H. influenzae possesses a mechanism for twitching motility will likely profoundly influence our understanding of H. influenzae-induced diseases of the respiratory tract and their sequelae.
    Keywords: Medicine ; Biology;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, 2004, Vol. 72(5), p.3002
    Description: In 1995, The Institute for Genomic Research completed the genomic sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. This sequence, though extremely useful in understanding the basic biology of H. influenzae, has yet to provide significant insight into our understanding of disease caused by nontypeable H. influenzae (NTHI), because serotype d strains are not generally pathogens. In contrast, NTHI strains are frequently mucosal pathogens and are the primary pathogens of chronic otitis media as well as a significant cause of acute otitis media in children. Thus, it is of great importance to further understand their biology. We used a DNA-based microarray approach to identify genes present in a clinical isolate of NTHI that were absent from strain Rd. We also sequenced the genome of a second NTHI isolate from a child with chronic otitis media to threefold coverage and then used an array of bioinformatics tools to identify genes present in this NTHI strain but absent from strain Rd. These methods were complementary in approach and results. We identified, in both strains, homologues of H. influenzae lav, an autotransported protein of unknown function; tnaA, which encodes tryptophanase; as well as a homologue of Pasteurella multocida tsaA, which encodes an alkyl peroxidase that may play a role in protection against reactive oxygen species. We also identified a number of putative restriction-modification systems, bacteriophage genes and transposon-related genes. These data provide new insight that complements and extends our ongoing analysis of NTHI virulence determinants.
    Keywords: Medicine ; Biology;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Microbiology, April, 2008, Vol.154(4), p.1152(9)
    Description: To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, IspA 1, IspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.
    Keywords: Gene Expression -- Health Aspects ; Hemophilus Infections -- Genetic Aspects
    ISSN: 1350-0872
    E-ISSN: 14652080
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: PLoS ONE, August 26, 2014, Vol.9(8)
    Description: Nontypeable Haemophilus influenzae (NTHi) are Gram-negative commensal bacteria that reside in the nasopharynx. NTHi can also cause multiple upper and lower respiratory tract diseases that include sinusitis, conjunctivitis, bronchitis, and otitis media. In numerous bacterial species the ferric uptake regulator (Fur) acts as a global regulator of iron homeostasis by negatively regulating the expression of iron uptake systems. However in NTHi strain 86-028NP and numerous other bacterial species there are multiple instances where Fur positively affects gene expression. It is known that many instances of positive regulation by Fur occur indirectly through a small RNA intermediate. However, no examples of small RNAs have been described in NTHi. Therefore we used RNA-Seq analysis to analyze the transcriptome of NTHi strain 86-028NPrpsL and an isogenic 86-028NPrpsL[DELTA]fur strain to identify Fur-regulated intergenic transcripts. From this analysis we identified HrrF, the first small RNA described in any Haemophilus species. Orthologues of this small RNA exist only among other Pasteurellaceae. Our analysis showed that HrrF is maximally expressed when iron levels are low. Additionally, Fur was shown to bind upstream of the hrrF promoter. RNA-Seq analysis was used to identify targets of HrrF which include genes whose products are involved in molybdate uptake, deoxyribonucleotide synthesis, and amino acid biosynthesis. The stability of HrrF is not dependent on the RNA chaperone Hfq. This study is the first step in an effort to investigate the role small RNAs play in altering gene expression in response to iron limitation in NTHi.
    Keywords: Hemophilus Infections -- Analysis ; Bacteria -- Analysis ; Rna -- Analysis ; Gene Expression -- Analysis
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: PLoS ONE, August 26, 2014, Vol.9(8)
    Description: Nontypeable Haemophilus influenzae (NTHi) are Gram-negative commensal bacteria that reside in the nasopharynx. NTHi can also cause multiple upper and lower respiratory tract diseases that include sinusitis, conjunctivitis, bronchitis, and otitis media. In numerous bacterial species the ferric uptake regulator (Fur) acts as a global regulator of iron homeostasis by negatively regulating the expression of iron uptake systems. However in NTHi strain 86-028NP and numerous other bacterial species there are multiple instances where Fur positively affects gene expression. It is known that many instances of positive regulation by Fur occur indirectly through a small RNA intermediate. However, no examples of small RNAs have been described in NTHi. Therefore we used RNA-Seq analysis to analyze the transcriptome of NTHi strain 86-028NPrpsL and an isogenic 86-028NPrpsL[DELTA]fur strain to identify Fur-regulated intergenic transcripts. From this analysis we identified HrrF, the first small RNA described in any Haemophilus species. Orthologues of this small RNA exist only among other Pasteurellaceae. Our analysis showed that HrrF is maximally expressed when iron levels are low. Additionally, Fur was shown to bind upstream of the hrrF promoter. RNA-Seq analysis was used to identify targets of HrrF which include genes whose products are involved in molybdate uptake, deoxyribonucleotide synthesis, and amino acid biosynthesis. The stability of HrrF is not dependent on the RNA chaperone Hfq. This study is the first step in an effort to investigate the role small RNAs play in altering gene expression in response to iron limitation in NTHi.
    Keywords: Hemophilus Infections – Analysis ; Bacteria – Analysis ; RNA – Analysis ; Gene Expression – Analysis
    ISSN: 1932-6203
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages