Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Annals of Forest Science, 12/2017, Vol.74(4)
    Description: Key message The combination of technical treatments and planting of alder trees in a compacted forest soil improves the circulation of air and water through the pore system. This leads to decreases in CO2concentrations and increases in root growth in the soil. Both are indicative of an initial recovery of soil structure. Context The compaction of forest soils, caused by forest machinery, has as a principal consequence: the destruction of soil structure and thus the reduction of the soil aeration status. Thus, the gas exchange between soil and atmosphere is reduced and the depth propagation of roots is limited, resulting in the shortage of water and nutrient supplies for trees. Aims This research aimed at detecting the first stages of recovery of soil structure in a compacted forest soil, which was treated with a combination of techniques (i.e., planting tree species, mulching, addition of lime), which could presumably accelerate the regeneration of soil structure. Methods The variation of CO2 concentrations and the dynamics of root growth were repeatedly measured. Linear mixed models were developed in order to test the effects of the treatments and the planting of trees on soil aeration, as well as to identify the influence of the different environmental effects on CO2 concentration in soil. Results The planting of root-active trees showed significant effects on decreases in CO2 concentrations. However, during the short-term observation, some negative effects occurred especially for the mulched sites. Nevertheless, all applied technical treatments promoted an improved soil aeration and a higher root growth compared to untreated sites which points to an initial enhanced recovery of soil structure. Pronounced seasonal and interannual variations of soil respiration were highly influenced by soil temperature and soil water content variations. Conclusion An initial regeneration of soil structure is indicated by distinct changes of the soil aeration status. This regeneration is partially enhanced by the applied treatments. The quantitative potential of the regeneration techniques needs a longer observation period for mid- and long-term soil recoveries.
    Keywords: Water Circulation ; Soil Compaction ; Propagation ; Soil Compaction ; Soil Temperature ; Soil Temperature ; Water Depth ; Soil Water ; Aeration ; Soil Water ; Gas Exchange ; Moisture Content ; Carbon Dioxide ; Forest Soils ; Trees ; Soil Aeration ; Soil Lime ; Forests ; Soil Structure ; Variation ; Trees ; Gas Exchange ; Compacted Soils ; Gas Exchange ; Forest Soils ; Water Content ; Environmental Effects ; Planting ; Soil Temperature ; Aeration ; Environmental Effects ; Environmental Effects ; Recovery ; Machinery ; Machinery ; Carbon Dioxide ; Soil Improvement ; Soil Structure ; Soil Structure ; Water Content ; Annual Variations ; Soil Aeration ; Trees ; Regeneration ; Forests ; Moisture Content ; Carbon Dioxide ; Atmospheric Models ; Aeration ; Planting ; Soil Dynamics ; Compacted Forest Soils ; Co2concentrations ; Root Growth ; Rhizotron Window ; Soil Temperature ; Soil Water Tension;
    ISSN: 1286-4560
    E-ISSN: 1297-966X
    Source: Springer (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Annals of Forest Science, 2017, Vol.74(4), pp.1-12
    Keywords: Compacted forest soils ; CO concentrations ; Root growth ; Rhizotron window ; Soil temperature ; Soil water tension
    ISSN: 1286-4560
    E-ISSN: 1297-966X
    Source: Springer Science & Business Media B.V.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Frontiers in Plant Science, 01 March 2019, Vol.10
    Description: In response to a wide-spread decline in forest vitality associated with acid rain in the 1980s, liming of soils has been implemented in many federal states in Germany to buffer further acid deposition and improve availability of nutrients such...
    Keywords: Norway Spruce ; Liming ; Drought Tolerance ; Resistance ; Resilience ; Botany
    E-ISSN: 1664-462X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Plant Science, 2019, Vol.10
    Description: In response to a wide-spread decline in forest vitality associated with acid rain in the 1980s, liming of soils has been implemented in many federal states in Germany to buffer further acid deposition and improve availability of nutrients such as calcium and magnesium. As a consequence, it may also increase vitality and depth of fine-root systems and hence improve the drought tolerance of species such as Norway spruce [ Picea abies (L.) Karst.], which occurs mostly on acidic forest soils. However, the influence of repeated liming on drought tolerance of trees has never been studied. Here we compared the resistance, recovery and resilience of radial growth in P. abies in relation to drought in limed and control stands and assessed how the dosage and interval between lime application and drought year influences the radial growth response of P. abies . We analyzed radial growth in 198 P. abies trees of six experimental sites in south–west Germany. An analysis of the radial increment over the last 30 years allowed the analysis of drought events shortly after the first liming (short-term effect) as well as posterior drought events (mid- to long-term effects). Generalized linear models were developed to assess the influence of drought intensity, site and period since first liming on the drought tolerance of Norway spruce. Regardless of drought intensity, there was no general increase in drought resistance of Norway spruce in response to liming. However, drought resistance of radial growth improved on a loamy site that was additionally treated with wood ash 30 years after the first lime application. Furthermore, recovery and resilience of radial growth after severe drought events were generally better in spruce trees of limed treatments. This indicates a shorter stress period in spruce trees growing on limed soil, which may reduce their susceptibility to secondary, drought-related pests and pathogens.
    Keywords: Plant Science ; Norway Spruce ; Liming ; Drought Tolerance ; Resistance ; Resilience
    E-ISSN: 1664-462X
    Source: U.S. National Library of Medicine (NIH/NLM)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages