Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Cancer research, 01 April 2003, Vol.63(7), pp.1508-14
    Description: Replication restricted oncolytic viruses such as multimutated herpes simplex virus type 1 (HSV-1) G207 represent a novel and attractive approach for cancer therapy, including pediatric solid tumors. Rhabdomyosarcoma is the most common soft-tissue sarcoma of childhood and is often diagnosed already as an advanced disseminated disease. Despite aggressive therapeutic approaches, the prognosis for patients with metastatic rhabdomyosarcoma remains grim. Therefore, there is a need for novel effective drugs with superior safety and efficacy profile. In this study, we showed marked in vitro activity of HSV-1 G207 against embryonal and alveolar rhabdomyosarcoma cells. All human embryonal (KF-RMS-1, RD, and CCA) and alveolar RMS (KFR, Rh28, Rh30, and Rh41) cell lines were highly sensitive to cytotoxic and replicative effects of G207 even at a multiplicity of infection of 0.01, except embryonal Rh1 rhabdomyosarcoma cells, which were efficiently killed only upon multiplicity of infection of 1.0. i.v. G207 treatment of xenotransplanted KFR and KF-RMS-1 tumors in mice led to significant tumor growth inhibition of both tumor entities, whereas intraneoplastic G207 treatment additionally resulted in complete tumor disappearance in 25% of animals. No difference has been found between alveolar and embryonal types of rhabdomyosarcoma. Combination treatment of both cell lines with G207 and vincristine led to strongly enhanced in vitro cytotoxicity without affecting infection efficiency and replication of G207 in KFR as well as in KF-RMS-1 cells. In vivo combination treatment using i.v. G207 and vincristine resulted in complete regression of alveolar rhabdomyosarcoma in five of eight animals and significant growth inhibition of embryonal rhabdomyosarcoma. Taking into consideration the proven safety of G207 in humans, we suggest that G207 alone and in combination with vincristine should be additionally evaluated as a potential agent against human rhabdomyosarcoma.
    Keywords: Antineoplastic Agents, Phytogenic -- Pharmacology ; Rhabdomyosarcoma -- Therapy ; Simplexvirus -- Physiology ; Vincristine -- Pharmacology
    ISSN: 0008-5472
    E-ISSN: 15387445
    Source: MEDLINE/PubMed (U.S. National Library of Medicine)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: International Journal of Oncology, October 2005, Vol.27(4), pp.1029-1037
    Description: Acquisition of P-gp-mediated multidrug-resistance does not always correlate with observed malignant behavior of NB. To characterize alterations accompanying development of multidrug-resistance in NB we established two neuroblastoma cell sublines resistant to vincristine (UKF-NB-3rVCR10) and doxorubicin (UKF-NB-3rDOX20). UKF-NB-3rVCR10 and UKF-NB-3rDOX20 overexpressed functional P-gp and developed an increased malignant phenotype: presented constitutive phosphorylation of AKT, resistance to γ-irradiation, and had increased survival in serum-free medium. Inhibition of P-gp restored chemosensitivity but did not affect increased survival in serum-free medium and sensitivity to γ-irradiation. Inhibition of AKT had no influence on chemoresistance but restored sensitivity to serum starvation. Both resistant cell lines acquired additional chromosomal changes. UKF-NB-3rVCR10 cells acquired a missense P53 mutation in exon 5, an increased MYCN amplification, an enhanced adhesion to endothelium, a decreased NCAM expression, a distinctly higher clonogenicity, and an increased in vivo tumorigenicity. We conclude that acquisition of increased malignant behavior in neuroblastoma occurs concomitantly with multidrug-resistance and is P-gp-independent.
    Keywords: Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; ATP Binding Cassette Transporter, Subfamily B, Member 1 -- Metabolism ; Neuroblastoma -- Pathology;
    ISSN: 1019-6439
    E-ISSN: 17912423
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Cancer Letters, 2007, Vol.250(1), pp.107-116
    Description: The efficacy of Onconase on the growth of a panel of chemosensitive and chemoresistant neuroblastoma cell lines was investigated. Onconase decreased cell viability of chemosensitive (IMR-32, UKF-NB-3) and chemoresistant neuroblastoma cell lines characterised by high expression of P-glycoprotein (P-gp) (UKF-NB-3 DOX ) or by high P-gp expression in combination with mutated p53 (UKF-NB-3 VCR , Be(2)-C), in a similar manner. Moreover, Onconase caused cell cycle block in G1 phase and induced caspase-independent cell death. Transmission electron microscope investigations suggested that Onconase-induced autophagy contributes to Onconase-induced cell death. Antitumour activity of Onconase against naïve and drug-resistant neuroblastoma xenografts was confirmed in animals.
    Keywords: Onconase ; Neuroblastoma ; Multi-Drug-Resistance ; P-Glycoprotein ; P53 ; Medicine
    ISSN: 0304-3835
    E-ISSN: 1872-7980
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Molecular pharmacology, March 2004, Vol.65(3), pp.520-7
    Description: Valproic acid (VPA) is a widely used antiepileptic agent that is undergoing clinical evaluation for anticancer therapy. We assessed the effects of VPA on angiogenesis in vitro and in vivo. In human umbilical vein endothelial cells, therapeutically relevant concentrations of VPA (0.25 to 1 mM) inhibited proliferation, migration, and tube formation. VPA 1 mM inhibited endothelial cell proliferation by 51 +/- 5%, migration by 86 +/- 11%, and tube formation by 82 +/- 3%. These changes were preceded by the hyperacetylation of histone H4, indicating the inhibition of histone deacetylase (HDAC), and a decreased expression of the endothelial nitric-oxide synthase (eNOS). The inhibition of endothelial cell tube formation by VPA was prevented by addition of the nitric oxide donor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate). The anticonvulsive active VPA derivative 2-ethyl-4-methylpentanoic acid, which does not inhibit HDAC, did not affect endothelial cell proliferation, tube formation, or eNOS expression. VPA was also found to inhibit angiogenesis in vivo in the chicken chorioallantoic membrane assay and in a Matrigel plug assay in mice. Embryos from VPA-treated mice showed disturbed vessel formation. These results indicate that therapeutic plasma levels of VPA inhibit angiogenesis by a mechanism involving a decrease in eNOS expression preceded by HDAC inhibition.
    Keywords: Angiogenesis Inhibitors -- Pharmacology ; Endothelium, Vascular -- Drug Effects ; Neovascularization, Physiologic -- Drug Effects ; Valproic Acid -- Pharmacology
    ISSN: 0026-895X
    E-ISSN: 15210111
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: BMC cancer, 21 December 2006, Vol.6, pp.294
    Description: Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). One explanation for the link between resistance and malignancy might be that resistance facilitates cancer progression and invasion. To investigate this hypothesis, adhesion, transendothelial penetration and NCAM (CD56) adhesion receptor expression of drug-resistant versus drug-sensitive NB tumor cells were evaluated. Acquired drug resistance was mimicked by exposing parental UKF-NB-2, UKF-NB-3 or IMR-32 tumor cells to increasing concentrations of vincristine- (VCR) or doxorubicin (DOX) to establish the resistant tumor cell sublines UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-3VCR, UKF-NB-3DOX, IMR-32VCR and IMR-32DOX. Additionally, the malignant behaviour of UKF-NB-4, which already possessed the intrinsic multidrug resistance (MDR) phenotype, was analyzed. UKF-NB-4 exposed to VCR or DOX were designated UKF-NB-4VCR or UKF-NB-4DOX. Combined phase contrast - reflection interference contrast microscopy was used to separately evaluate NB cell adhesion and penetration. NCAM was analyzed by flow cytometry, western blot and RT-PCR. VCR and DOX resistant tumor sublines showed enhanced adhesion and penetration capacity, compared to their drug naïve controls. Strongest effects were seen with UKF-NB-2VCR, UKF-NB-3VCR and IMR-32DOX. DOX or VCR treatment also evoked increased invasive behaviour of UKF-NB-4. The process of accelerated tumor invasion was accompanied by decreased NCAM surface and protein expression, and down-regulation of NCAM coding mRNA. Transfection of UKF-NB-4VCR cells with NCAM cDNA led to a significant receptor up-regulation, paralleled by diminished adhesion to an endothelial cell monolayer. It is concluded that NB cells resistant to anticancer drugs acquire increased invasive capacity relative to non-resistant parental cells, and that enhanced invasion is caused by strong down-regulation of NCAM adhesion receptors.
    Keywords: Cell Adhesion ; Cell Movement ; Drug Resistance, Neoplasm ; Cd56 Antigen -- Metabolism ; Endothelial Cells -- Metabolism ; Neural Cell Adhesion Molecules -- Metabolism ; Neuroblastoma -- Immunology
    E-ISSN: 1471-2407
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages