Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lang, Friederike  (10)
  • Ecosystems
Type of Medium
Language
Year
  • 1
    Language: English
    In: Nutrient Cycling in Agroecosystems, 2012, Vol.93(1), pp.75-88
    Description: Topsoil constituents are eroded from agricultural sites and leached towards drainage channels. This transfer can affect aquatic ecosystems and deteriorate the efficiency of drainage systems and fertilisers. As long as erosion cannot be completely avoided, the recycling of sediments and associated nutrients may offer a sustainable solution to these problems. The aim of our case study at the island Sant Erasmo, lagoon of Venice (Italy) was to assess the ecological problems and potentials of sediment recycling. With our assessment we concentrated on (1) the origin of channel sediments, (2) the benefit of sediment application for increasing the nutrient stocks of the soils, and (3) the risk of heavy metal (HM) contamination of arable soils by sediment application. Samples from soils of horticultural sites, sediments, and waters from adjacent drainage channels and lagoon sediments were analyzed for the concentrations of nutrients (P and K) and HM (Cu, Pb, and Zn). Potentially available channel sediment masses and element stocks were calculated for the soil fertility classes of Sant Erasmo based on local measurements of sediment depths and analyses of aerial photographs by a geographic information system. In a column experiment, leaching of both nutrients and Cu from recently dredged sediments was analyzed. Heavy metal concentrations of soils and channel sediments were much higher than of lagoon sediments. The similarity of the chemical properties of the channel sediments and of top soil samples implies that topsoil material is eroded into the channels. The amount of sediments accumulated in the channels corresponded to soil erosion rates between 2 and 23 t ha −1  a −1 . Channel sediments contained higher concentrations of nutrients and organic carbon but slightly lower concentrations of HM than the soils of adjacent horticultural sites. Sediment P and K yields would be sufficient to replace fertiliser application at the horticultural sites for up to 51 and 35 years, respectively. The column experiment indicated that Cu mobilization induced by oxidation processes is restricted to the first years after sediments are applied to the soils. Our study emphasizes that for a comprehensive assessment of sediment recycling in agricultural systems the available sediment stocks as well as the contents of nutrients and pollutants of the sediment in relation to soils have to be considered.
    Keywords: Phosphorus ; Heavy metals ; Nutrient cycling ; Leaching experiment
    ISSN: 1385-1314
    E-ISSN: 1573-0867
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Estuarine, Coastal and Shelf Science, 2010, Vol.87(1), pp.11-20
    Description: Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils. We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage “Venice and its lagoon”. We analysed the abundance of plant species at 255 sampling points along a land–sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. ) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. ) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
    Keywords: Coastal Wetlands ; Iron Oxides ; Halophyte Ecology ; Regression Trees ; Indicator Species Analysis ; Classification of Marsh Soils ; Biology ; Oceanography
    ISSN: 0272-7714
    E-ISSN: 1096-0015
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Wiley Interdisciplinary Reviews: Water, November 2017, Vol.4(6), pp.n/a-n/a
    Description: We review the state‐of‐the‐art of cross‐disciplinary knowledge on phosphorus (P) cycling in temperate forest ecosystems, focused at studies from hydrology, biology, biogeochemistry, soil‐, and geosciences. Changes in soil P stocks during long‐term ecosystem development are addressed briefly; the general ranges of specific P pools and P fluxes within the ecosystem and the presumed underlying processes are covered more in depth. Wherever possible, we differentiate between coniferous and deciduous forests. As the most important P pools, mineral soil, forest floor, vegetation, and microbial biomass are described in terms of pool size, molecular composition, and turnover. Litterfall, soil water seepage, atmospheric deposition, and biotic uptake as the most studied P fluxes in the forest ecosystem are discussed in detail, spotlighting biogeochemical processes relevant for mobilization and retention of P in the rooting zone. Through a meta‐analysis of available literature, we build a dataset that allows the quantification of major P‐cycle components in temperate forests in terms of range and distribution, highlighting similarities and differences between coniferous and deciduous forests. The two forest types are notably distinct in their distribution of P within compartments of the plant biomass and forest floor. The possibility to construct closed local P balances is often hindered by missing information on fluxes of dissolved and particulate P across the ecosystem boundary, be it in the atmosphere, soil, or on the surface. These fluxes are irregular in space and time and feature large overall mass fluxes but comparatively small P fluxes, making the latter one difficult to quantify. 2017, 4:e1243. doi: 10.1002/wat2.1243 This article is categorized under: A schematic respresentation of the Phosphorus cycle in temperate forests. Pools and fluxes are scaled to their average size. See the full paper for more detailed information and data sources.
    Keywords: Phosphorus Cycle ; Phosphorus ; Phosphorus Cycle ; Compartments ; Phosphorus ; Uptake ; Biogeochemistry ; Biomass ; Plant Biomass ; Environmental Changes ; Soil Water ; Pools ; Soil Water ; Distribution ; Composition ; Forests ; Phosphorus Cycle ; Biogeochemistry ; Biogeochemistry ; Biomass ; Biology ; Phosphorus ; Forests ; Microorganisms ; Ecosystems ; Moisture Content ; Forest Floor ; Forest Ecosystems ; Forests ; Stocks ; Hydrology ; Forests ; Rooting ; Pools ; Seepage ; Components ; Hydrology ; Deciduous Forests ; Forest Floor ; Fluxes ; Atmospheric Pollutant Deposition ; Soils ; Hydrology ; Seepage ; Biomass ; Hydrology ; Forest Biomass;
    ISSN: 2049-1948
    E-ISSN: 2049-1948
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Geomorphology, 01 June 2014, Vol.214, pp.157-167
    Description: Sediment trapping and organic carbon (OC) accretion in soil are crucial ecosystem services of floodplain forests. However, interactions between the two processes have scarcely been analyzed at the ecosystem level. This study aimed at quantifying OC accretion parameters (CAP, including sedimentation rate, OC concentration, OC accretion) over roughly the last 50 years on both sides of a dike in a Danubian floodplain forest in Austria. Additionally, we determined soil OC stocks (0–100 cm in depth) and modeled both CAP and OC stocks in relation to environmental parameters. Overall, mean sedimentation rate and OC accretion of the riparian forest were 0.8 cm y and 3.3 t OC ha y and significantly higher in flooded riparian forest (FRF; 1.0 cm y and 4.1 t OC ha y ) than in diked riparian forest (DRF; 0.3 cm y and 1.5 t OC ha y ). In contrast, mean OC concentration (0.05 t OC m ) and OC stocks (238 t OC ha ) were significantly higher in the DRF than in FRF (0.05 vs. 0.04 t OC m and 286 vs. 201 t OC ha ). Modeling revealed tree species, fluctuation of groundwater table, and the distance to the river as valuable indicators for OC accretion rate. The OC concentration and distance to the river were positively and sedimentation negatively correlated with OC stock. The dike was consistently ruled out as a significant predictor variable. Consequently, differences among FRF and DRF seem to be related rather to longer term processes during the last centuries than directly to the dike. Our findings highlight the relevance of sediment quality (i.e., OC concentration) for building up long-term soil OC stocks, whereas sediment quantity is the main driver of recent OC accretion rates.
    Keywords: Carbon Accretion Rate ; Carbon Stock ; Dendrogeomorphology ; Dike ; Floodplain Forest ; Sedimentation Rate ; Geography ; Geology
    ISSN: 0169-555X
    E-ISSN: 1872-695X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Geoderma, 15 February 2017, Vol.288, pp.204-212
    Description: Deadwood is a key factor in forest ecosystems, yet how it influences forest soil properties is uncertain. We hypothesized that changes in soil properties induced by deadwood mainly depend on the amount of released phenolic matter. Consequently we expected softwood- and hardwood-related deadwood effects on soil to be explained by unequal enrichment of phenolic substances. We measured differences in the quantity and composition of soil organic matter (SOM), pH, nutrient concentrations, and enzymatic activity between paired control and treatment points influenced by deadwood of silver fir ( Mill.) and European beech ( L.), and checked for correlations with total C and phenolic matter; the latter was quantified as aromaticity of water-extractable organic C through specific UV absorbance at 280 nm. Near fir deadwood, aromaticity and effective cation exchange capacity (CEC) increased while pH decreased. In comparison, concentrations of water-extractable organic C, effective CEC, exchangeable Ca and Mg , base saturation, and available molybdenum-reactive P increased near beech deadwood while exchangeable Al decreased. For fir deadwood, soil properties strongly correlated almost exclusively with total C. For beech deadwood, numerous strong correlations with aromaticity indicated that extractable phenolics influenced soil properties. These differences in correlations imply that deadwood affects soil through the composition of added phenolic matter, which would stem from differing decay processes and organisms. Decayed, particulate lignin from brown-rot in fir deadwood as opposed to oxidized, dissolved lignin from white-rot in beech deadwood would account for our observations.
    Keywords: Coarse Woody Debris ; Soil Chemistry ; Lignin ; Brown-Rot Fungi ; White-Rot Fungi ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2016, Vol.179(2), pp.129-135
    Description: Phosphorus is one of the major limiting factors of primary productivity in terrestrial ecosystems and, thus, the P demand of plants might be among the most important drivers of soil and ecosystem development. The P cycling in forest ecosystems seems an ideal example to illustrate the concept of ecosystem nutrition. Ecosystem nutrition combines and extents the traditional concepts of nutrient cycling and ecosystem ecology. The major extension is to consider also the loading and unloading of nutrient cycles and the impact of nutrient acquiring and recycling processes on overall ecosystem properties. Ecosystem nutrition aims to integrate nutrient related aspects at different scales and in different ecosystem compartments including all processes, interactions and feedbacks associated with the nutrition of an ecosystem. We review numerous previous studies dealing with P nutrition from this ecosystem nutrition perspective. The available information contributes to the description of basic ecosystem characteristics such as emergence, hierarchy, and robustness. In result, we were able to refine Odum's hypothesis on P nutrition strategies along ecosystem succession to substrate related ecosystem nutrition and development. We hypothesize that at sites rich in mineral‐bound P, plant and microbial communities tend to introduce P from primary minerals into the biogeochemical P cycle (acquiring systems), and hence the tightness of the P cycle is of minor relevance for ecosystem functioning. In contrast, tight P recycling is a crucial emergent property of forest ecosystems established at sites poor in mineral bound P (recycling systems). We conclude that the integration of knowledge on nutrient cycling, soil science, and ecosystem ecology into holistic ecosystem nutrition will provide an entirely new view on soil–plant–microbe interactions.
    Keywords: Ecosystem Properties ; P Recycling ; P Nutrition Strategy ; Forest Nutrition ; P Acquiring
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2016, Vol.179(4), pp.472-480
    Description: Among several environmental factors shaping soil microbial communities the impact of soil nutrients is of special interest. While continuous application mainly of N and P dramatically shifts community composition during fertilization, it remains unclear whether this effect is consistent in generic, unfertilized beech forest ecosystems of Germany, where differences in nutrient contents are mostly a result of the parental material and climatic conditions. We postulate that in such ecosystems nutrient effects are less pronounced due to the possibility of the soil microbiome to adapt to the corresponding conditions over decades and the vegetation acts as the major driver. To test this hypothesis, we investigated the bacterial community composition in five different German beech dominated forest soils, representing a natural gradient of total‐ and easily available mineral‐P. A community fingerprinting approach was performed using terminal‐Restriction Fragment Length Polymorphism analysis of the 16S rRNA gene, while abundance of bacteria was measured applying quantitative real‐time PCR. Bacterial communities at the five forest sites were distinctly separated, with strongest differences between the end‐members of the P‐gradient. However the majority of identified microbial groups (43%) were present at all sites, forming a core microbiome independent from the differences in soil chemical properties. Especially in the P‐deficient soil the abundance of unique bacterial groups was highly increased, indicating a special adaption of the community to P limitation at this site. In this regard Correspondence Analysis elucidated that exclusively soil pH significantly affected community composition at the investigated sites. In contrast soil C, N and P contents did mainly affect the overall abundance of bacteria.
    Keywords: Core Microbiome ; Forest Soil ; Nutrient Content ; Diversity
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Journal of Plant Nutrition and Soil Science, October 2010, Vol.173(5), pp.644-653
    Description: Riparian forests are assumed to play a crucial role in the global carbon cycle. However, little data are available on C stocks of floodplains in comparison to other terrestrial ecosystems. In this study, we quantified the C stocks of aboveground biomass and soils of riparian vegetation types at 76 sampling sites in the Donau‐Auen National Park in Austria. Based on our results and a remotely sensed vegetation map, we estimated total C stocks. Carbon stocks in soils (up to 354 t ha within 1 m below surface) were huge compared to other terrestrial ecosystems. As expected, soils of different vegetation types showed different texture with a higher percentage of sandy soils at the softwood sites, while loamy soils prevailed at hardwood sites. Total C stocks of vegetation types were significantly different, but reflect differences in woody plant biomass rather than in soil C stocks. Mature hardwood and cottonwood forests proved to have significantly higher total C stocks (474 and 403 t ha, respectively) than young reforestations (217 t ha) and meadows (212 t ha). The C pools of softwood forests (356 t ha) ranged between those of hardwood/cottonwood forests and of reforestations/meadows. Our study proves the relevance of floodplains as possible C sinks, which should be increasingly taken into account for river management. Furthermore, we conclude that plant‐species distribution does not indicate the conditions of sedimentation and soil C sequestration over the time span of interest for the development of soil C stocks.
    Keywords: Carbon Stocks ; Organic Carbon ; Donau‐Auen National Park ; Fluvial Ecosystems ; Riparian Forest
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: European Journal of Soil Science, May 2019, Vol.70(3), pp.454-465
    Description: Soil structural traits provide links between soil structure and ecosystem functioning. The size and stability of soil aggregates are assumed to provide information on aggregate formation and turnover. A standard method to analyse these traits is to determine the mass distribution on sieves. The major drawback of this method is the small size resolution because of a small number of size classes. A promising, yet still unexplored, method for size distribution analysis in soil science, is dynamic image analysis, which foremost allows a much larger diameter resolution and the assessment of both size and shape distributions. The aim of our study was to validate the applicability of dynamic digital image analysis in combination with sonication to characterize the size and shape distribution and the stability of aggregates. We used two different heterogeneous reference materials and three different soil samples with different aggregate stabilities to test this method. The soil samples were chosen based on increasing clay, humus and calcium carbonate contents. The method yielded reproducible results for diameter and shape distributions for both reference materials and soil samples. The most important improvement compared to well‐established methods was the extremely large size resolution. This allows specification of the pattern of diameter‐dependent breakup curves by relating them to specific soil properties. The information on sphericity adds supplementary information on the aggregates released. We found much lower sphericity of 1‐mm aggregates mobilized from topsoil samples formed from the activity of living organisms than aggregates mobilized from subsoil samples formed mainly by physicochemical processes. Highlights Our aim was to validate dynamic digital image analysis to characterize soil aggregates.Dynamic image analysis allows high resolution and shape analysis compared to established methods.The method yielded reproducible results for diameter and shape distributions.We established high‐resolution disruption patterns of aggregates enabling new approaches in future research.
    Keywords: Aggregate Breakdown Dynamics ; Particle‐Size Distribution ; Ultrasonic Dispersion
    ISSN: 1351-0754
    E-ISSN: 1365-2389
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages